Spark Yarn-cluster与Yarn-client

简介:

摘要

  在Spark中,有Yarn-Client和Yarn-Cluster两种模式可以运行在Yarn上,通常Yarn-cluster适用于生产环境,而Yarn-Cluster更适用于交互,调试模式,以下是它们的区别
 
 
Spark插拨式资源管理
  Spark支持Yarn,Mesos,Standalone三种集群部署模式,它们的共同点:Master服务(Yarn ResourceManager,Mesos master,Spark standalone)来决定哪些应用可以运行以及在哪什么时候运行,Slave服务(Yarn NodeManger)运行在每个节点上,节点上实际运行着Executor进程,此外还监控着它们的运行状态以及资源的消耗
 
 
Spark On Yarn的优势
  1. Spark支持资源动态共享,运行于Yarn的框架都共享一个集中配置好的资源池
  2. 可以很方便的利用Yarn的资源调度特性来做分类·,隔离以及优先级控制负载,拥有更灵活的调度策略
  3.Yarn可以自由地选择executor数量
  4.Yarn是唯一支持Spark安全的集群管理器,使用Yarn,Spark可以运行于Kerberized Hadoop之上,在它们进程之间进行安全认证 
 
Yarn-cluster VS Yarn-client
  当在Spark On Yarn模式下,每个Spark Executor作为一个Yarn container在运行,同时支持多个任务在同一个container中运行,极大地节省了任务的启动时间
 
Appliaction Master
  为了更好的理解这两种模式的区别先了解下Yarn的Application Master概念,在Yarn中,每个application都有一个Application Master进程,它是Appliaction启动的第一个容器,它负责从ResourceManager中申请资源,分配资源,同时通知NodeManager来为Application启动container,Application Master避免了需要一个活动的client来维持,启动Applicatin的client可以随时退出,而由Yarn管理的进程继续在集群中运行
 
Yarn-cluster
  在Yarn-cluster模式下,driver运行在Appliaction Master上,Appliaction Master进程同时负责驱动Application和从Yarn中申请资源,该进程运行在Yarn container内,所以启动Application Master的client可以立即关闭而不必持续到Application的生命周期,下图是yarn-cluster模式
 
 
Yarn-cluster模式下作业执行流程:
  1. 客户端生成作业信息提交给ResourceManager(RM)
  2. RM在某一个NodeManager(由Yarn决定)启动container并将Application Master(AM)分配给该NodeManager(NM)
  3. NM接收到RM的分配,启动Application Master并初始化作业,此时这个NM就称为Driver
  4. Application向RM申请资源,分配资源同时通知其他NodeManager启动相应的Executor
  5. Executor向NM上的Application Master注册汇报并完成相应的任务
 
Yarn-client
  在Yarn-client中,Application Master仅仅从Yarn中申请资源给Executor,之后client会跟container通信进行作业的调度,下图是Yarn-client模式
 
Yarn-client模式下作业执行流程:
  1. 客户端生成作业信息提交给ResourceManager(RM)
  2. RM在本地NodeManager启动container并将Application Master(AM)分配给该NodeManager(NM)
  3. NM接收到RM的分配,启动Application Master并初始化作业,此时这个NM就称为Driver
  4. Application向RM申请资源,分配资源同时通知其他NodeManager启动相应的Executor
  5. Executor向本地启动的Application Master注册汇报并完成相应的任务
 

下表是Spark Standalone与Spark On Yarn模式下的比较

 


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6640410.html,如需转载请自行联系原作者
相关文章
|
3月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
235 3
|
6天前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
19 3
|
30天前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
21 1
|
2月前
|
消息中间件 分布式计算 Java
Linux环境下 java程序提交spark任务到Yarn报错
Linux环境下 java程序提交spark任务到Yarn报错
39 5
|
5月前
|
资源调度 分布式计算 监控
Spark Standalone与YARN的区别?
【6月更文挑战第17天】Spark Standalone与YARN的区别?
321 57
|
4月前
|
SQL 弹性计算 资源调度
云服务器 ECS产品使用问题之bin/spark-sql --master yarn如何进行集群模式运行
云服务器ECS(Elastic Compute Service)是各大云服务商阿里云提供的一种基础云计算服务,它允许用户租用云端计算资源来部署和运行各种应用程序。以下是一个关于如何使用ECS产品的综合指南。
|
6月前
|
分布式计算 资源调度 Spark
Spark的一些问题汇总 及 Yarn与Spark架构的对比
Spark的一些问题汇总 及 Yarn与Spark架构的对比
68 0
|
6月前
|
分布式计算 资源调度 监控
Spark学习--1、Spark入门(Spark概述、Spark部署、Local模式、Standalone模式、Yarn模式)(一)
Spark学习--1、Spark入门(Spark概述、Spark部署、Local模式、Standalone模式、Yarn模式)(一)
197 1
|
分布式计算 资源调度 监控
Spark Yarn模式部署集群
Spark Yarn模式部署集群
83 1
|
分布式计算 资源调度 Hadoop
Spark on Yarn集群模式搭建及测试
Spark on Yarn集群模式搭建及测试
320 0