Hadoop【基础知识 03】【Hadoop集群资源管理器yarn】(图片来源于网络)

简介: 【4月更文挑战第4天】Hadoop【基础知识 03】【Hadoop集群资源管理器yarn】(图片来源于网络)

1.hadoop yarn 简介

Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在 YARN 上,由 YARN 进行统一地管理和资源分配。

请添加图片描述

2.YARN架构

请添加图片描述

  1. ResourceManager

ResourceManager 通常在独立的机器上以后台进程的形式运行,它是整个集群资源的主要协调者和管理者。 ResourceManager 负责给用户提交的所有应用程序分配资源,它根据应用程序优先级、队列容量、ACLs、数据位置等信息,做出决策,然后以共享的、安全的、多租户的方式制定分配策略,调度集群资源。

  1. NodeManager

NodeManager 是 YARN 集群中的每个具体节点的管理者。主要负责该节点内所有容器的生命周期的管理,监视资源和跟踪节点健康。具体如下:

  • 启动时向 ResourceManager 注册并定时发送心跳消息,等待 ResourceManager 的指令;
  • 维护 Container 的生命周期,监控 Container 的资源使用情况;
  • 管理任务运行时的相关依赖,根据 ApplicationMaster 的需要,在启动 Container 之前将需要的程序及其依赖拷贝到本地。
  1. ApplicationMaster

在用户提交一个应用程序时,YARN 会启动一个轻量级的进程 ApplicationMaster 。ApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器内资源的使用情况,同时还负责任务的监控与容错。具体如下:

  • 根据应用的运行状态来决定动态计算资源需求;
  • 向 ResourceManager 申请资源,监控申请的资源的使用情况;
  • 跟踪任务状态和进度,报告资源的使用情况和应用的进度信息;
  • 负责任务的容错。
  1. Contain

Container 是 YARN 中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。当 AM 向 RM 申请资源时,RM 为 AM 返回的资源是用 Container 表示的。YARN 会为每个任务分配一个 Container ,该任务只能使用该 Container 中描述的资源。 ApplicationMaster 可在 Container 内运行任何类型的任务。例如, MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。

3.YARN工作原理简述

请添加图片描述

  1. Client 提交作业到 YARN 上;
  2. Resource Manager 选择一个 Node Manager ,启动一个 Container 并运行 Application
    Master 实例;
  3. Application Master 根据实际需要向 Resource Manager 请求更多的 Container 资源(如
    果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务);
  4. Application Master 通过获取到的 Container 资源执行分布式计算。

4.YARN工作原理详述

请添加图片描述

  1. 作业提交

client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业 (第 1 步) 。新的作业 ID(应用 ID) 由资源管理器分配 (第 2 步)。作业的 client 核实作业的输出, 计算输入的 split, 将作业的资源 (包括 Jar 包,配置文件, split 信息) 拷贝给 HDFS(第 3 步)。 最后, 通过调用资源管理器的submitApplication() 来提交作业 (第 4 步)。

  1. 作业初始化

当资源管理器收到 submitApplciation() 的请求时, 就将该请求发给调度器 (scheduler), 调度器分配 container, 然后资源管理器在该 container 内启动应用管理器进程, 由节点管理器监控 (第 5 步)。

MapReduce 作业的应用管理器是一个主类为 MRAppMaster 的 Java 应用,其通过创造一些bookkeeping 对象来监控作业的进度, 得到任务的进度和完成报告 (第 6 步)。然后其通过分布式文件系统得到由客户端计算好的输入 split(第 7 步),然后为每个输入 split 创建一个 map 任务, 根据mapreduce.job.reduces 创建 reduce 任务对象。

  1. 任务分配

如果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务。

如果不是小作业, 那么应用管理器向资源管理器请求 container 来运行所有的 map 和 reduce 任务 (第8 步)。这些请求是通过心跳来传输的, 包括每个 map 任务的数据位置,比如存放输入 split 的主机名和机架 (rack),调度器利用这些信息来调度任务,尽量将任务分配给存储数据的节点, 或者分配给和存放输入 split 的节点相同机架的节点。

  1. 任务运行

当一个任务由资源管理器的调度器分配给一个 container 后,应用管理器通过联系节点管理器来启动 container(第 9步)。任务由一个主类为 YarnChild 的 Java 应用执行, 在运行任务之前首先本地化任务需要的资源,比如作业配置,JAR 文件, 以及分布式缓存的所有文件 (第 10 步。 最后, 运行 map 或reduce 任务 (第 11 步)。YarnChild 运行在一个专用的 JVM 中, 但是 YARN 不支持 JVM 重用。

  1. 进度和状态更新

YARN 中的任务将其进度和状态 (包括 counter) 返回给应用管理器, 客户端每秒 (通mapreduce.client.progressmonitor.pollinterval 设置) 向应用管理器请求进度更新, 展示给用户。

  1. 作业完成

除了向应用管理器请求作业进度外, 客户端每 5 分钟都会通过调用 waitForCompletion() 来检查作业是否完成,时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业完成之后, 应用管理器和 container 会清理工作状态, OutputCommiter 的作业清理方法也会被调用。作业的信息会被作业历史服务器存储以备之后用户核查。

5.提交作业到YARN上运行

这里以提交 Hadoop Examples 中计算 Pi 的 MApReduce 程序为例,相关 Jar 包在 Hadoop 安装目录的 share/hadoop/mapreduce 目录下:

# 提交格式: hadoop jar jar包路径 主类名称 主类参数
# hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.2.jar pi 3 3
目录
相关文章
|
6月前
|
分布式计算 监控 网络协议
Hadoop集群长时间运行网络延迟原因
【6月更文挑战第20天】
164 2
|
5月前
|
分布式计算 资源调度 Hadoop
Hadoop网络带宽限制
【7月更文挑战第13天】
137 14
|
6月前
|
存储 缓存 分布式计算
Hadoop性能优化网络传输压力
【6月更文挑战第7天】
73 5
|
3月前
|
资源调度 分布式计算 运维
Hadoop集群资源管理篇-资源调度器
详细介绍了Hadoop集群资源管理中的资源调度器,包括资源分配的概念、大数据运维工程师如何管理集群工作负载、资源调度器的背景、Hadoop提供的FIFO、容量调度器和公平调度器三种资源调度器的概述以及它们之间的对比。
148 4
|
5月前
|
监控 安全 网络安全
超实用的80个网络基础知识!
【7月更文挑战第1天】
97 0
超实用的80个网络基础知识!
|
6月前
|
存储 分布式计算 监控
如何提高Hadoop集群的网络传输速度?
【6月更文挑战第18天】如何提高Hadoop集群的网络传输速度?
74 3
|
6月前
|
存储 分布式计算 固态存储
Hadoop性能优化硬件和网络优化
【6月更文挑战第7天】
111 3
|
7月前
|
存储 分布式计算 资源调度
Hadoop的网络容错
【5月更文挑战第13天】
93 9
|
7月前
|
域名解析 网络协议 网络安全
|
7天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
45 17

热门文章

最新文章