Hadoop【基础知识 03】【Hadoop集群资源管理器yarn】(图片来源于网络)

简介: 【4月更文挑战第4天】Hadoop【基础知识 03】【Hadoop集群资源管理器yarn】(图片来源于网络)

1.hadoop yarn 简介

Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在 YARN 上,由 YARN 进行统一地管理和资源分配。

请添加图片描述

2.YARN架构

请添加图片描述

  1. ResourceManager

ResourceManager 通常在独立的机器上以后台进程的形式运行,它是整个集群资源的主要协调者和管理者。 ResourceManager 负责给用户提交的所有应用程序分配资源,它根据应用程序优先级、队列容量、ACLs、数据位置等信息,做出决策,然后以共享的、安全的、多租户的方式制定分配策略,调度集群资源。

  1. NodeManager

NodeManager 是 YARN 集群中的每个具体节点的管理者。主要负责该节点内所有容器的生命周期的管理,监视资源和跟踪节点健康。具体如下:

  • 启动时向 ResourceManager 注册并定时发送心跳消息,等待 ResourceManager 的指令;
  • 维护 Container 的生命周期,监控 Container 的资源使用情况;
  • 管理任务运行时的相关依赖,根据 ApplicationMaster 的需要,在启动 Container 之前将需要的程序及其依赖拷贝到本地。
  1. ApplicationMaster

在用户提交一个应用程序时,YARN 会启动一个轻量级的进程 ApplicationMaster 。ApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器内资源的使用情况,同时还负责任务的监控与容错。具体如下:

  • 根据应用的运行状态来决定动态计算资源需求;
  • 向 ResourceManager 申请资源,监控申请的资源的使用情况;
  • 跟踪任务状态和进度,报告资源的使用情况和应用的进度信息;
  • 负责任务的容错。
  1. Contain

Container 是 YARN 中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。当 AM 向 RM 申请资源时,RM 为 AM 返回的资源是用 Container 表示的。YARN 会为每个任务分配一个 Container ,该任务只能使用该 Container 中描述的资源。 ApplicationMaster 可在 Container 内运行任何类型的任务。例如, MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。

3.YARN工作原理简述

请添加图片描述

  1. Client 提交作业到 YARN 上;
  2. Resource Manager 选择一个 Node Manager ,启动一个 Container 并运行 Application
    Master 实例;
  3. Application Master 根据实际需要向 Resource Manager 请求更多的 Container 资源(如
    果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务);
  4. Application Master 通过获取到的 Container 资源执行分布式计算。

4.YARN工作原理详述

请添加图片描述

  1. 作业提交

client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业 (第 1 步) 。新的作业 ID(应用 ID) 由资源管理器分配 (第 2 步)。作业的 client 核实作业的输出, 计算输入的 split, 将作业的资源 (包括 Jar 包,配置文件, split 信息) 拷贝给 HDFS(第 3 步)。 最后, 通过调用资源管理器的submitApplication() 来提交作业 (第 4 步)。

  1. 作业初始化

当资源管理器收到 submitApplciation() 的请求时, 就将该请求发给调度器 (scheduler), 调度器分配 container, 然后资源管理器在该 container 内启动应用管理器进程, 由节点管理器监控 (第 5 步)。

MapReduce 作业的应用管理器是一个主类为 MRAppMaster 的 Java 应用,其通过创造一些bookkeeping 对象来监控作业的进度, 得到任务的进度和完成报告 (第 6 步)。然后其通过分布式文件系统得到由客户端计算好的输入 split(第 7 步),然后为每个输入 split 创建一个 map 任务, 根据mapreduce.job.reduces 创建 reduce 任务对象。

  1. 任务分配

如果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务。

如果不是小作业, 那么应用管理器向资源管理器请求 container 来运行所有的 map 和 reduce 任务 (第8 步)。这些请求是通过心跳来传输的, 包括每个 map 任务的数据位置,比如存放输入 split 的主机名和机架 (rack),调度器利用这些信息来调度任务,尽量将任务分配给存储数据的节点, 或者分配给和存放输入 split 的节点相同机架的节点。

  1. 任务运行

当一个任务由资源管理器的调度器分配给一个 container 后,应用管理器通过联系节点管理器来启动 container(第 9步)。任务由一个主类为 YarnChild 的 Java 应用执行, 在运行任务之前首先本地化任务需要的资源,比如作业配置,JAR 文件, 以及分布式缓存的所有文件 (第 10 步。 最后, 运行 map 或reduce 任务 (第 11 步)。YarnChild 运行在一个专用的 JVM 中, 但是 YARN 不支持 JVM 重用。

  1. 进度和状态更新

YARN 中的任务将其进度和状态 (包括 counter) 返回给应用管理器, 客户端每秒 (通mapreduce.client.progressmonitor.pollinterval 设置) 向应用管理器请求进度更新, 展示给用户。

  1. 作业完成

除了向应用管理器请求作业进度外, 客户端每 5 分钟都会通过调用 waitForCompletion() 来检查作业是否完成,时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业完成之后, 应用管理器和 container 会清理工作状态, OutputCommiter 的作业清理方法也会被调用。作业的信息会被作业历史服务器存储以备之后用户核查。

5.提交作业到YARN上运行

这里以提交 Hadoop Examples 中计算 Pi 的 MApReduce 程序为例,相关 Jar 包在 Hadoop 安装目录的 share/hadoop/mapreduce 目录下:

# 提交格式: hadoop jar jar包路径 主类名称 主类参数
# hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.2.jar pi 3 3
目录
相关文章
|
1天前
|
SQL 弹性计算 分布式计算
实时计算 Flink版产品使用合集之如果产品是基于ak的,可以提交sql任务到ecs自建hadoop集群吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
13 0
|
2天前
|
网络协议 Linux 网络架构
|
2天前
|
分布式计算 监控 Hadoop
Ganglia监控Hadoop与HBase集群
Ganglia监控Hadoop与HBase集群
|
2天前
|
存储 分布式计算 Hadoop
Hadoop集群搭建
Hadoop集群搭建
|
2天前
|
分布式计算 负载均衡 Hadoop
Hadoop集群节点添加
Hadoop集群节点添加
|
2天前
|
存储 分布式计算 Hadoop
Hadoop集群规模扩展
【4月更文挑战第14天】Hadoop集群扩展可通过添加更多节点、垂直扩展(增强单节点资源)和水平扩展(增加节点数量)来实现。关键点包括规划扩展策略、确保集群稳定性和优化配置。注意在扩展过程中要保证数据完整性,并根据需求调整以提升集群性能和效率。
23 1
|
2天前
|
分布式计算 资源调度 Hadoop
Hadoop【基础知识 03+04】【Hadoop集群资源管理器yarn】(图片来源于网络)(hadoop fs + hadoop dfs + hdfs dfs 使用举例)
【4月更文挑战第5天】Hadoop【基础知识 03】【Hadoop集群资源管理器yarn】(图片来源于网络)Hadoop【基础知识 04】【HDFS常用shell命令】(hadoop fs + hadoop dfs + hdfs dfs 使用举例)
62 9
|
2天前
|
存储 分布式计算 Hadoop
大数据处理架构Hadoop
【4月更文挑战第10天】Hadoop是开源的分布式计算框架,核心包括MapReduce和HDFS,用于海量数据的存储和计算。具备高可靠性、高扩展性、高效率和低成本优势,但存在低延迟访问、小文件存储和多用户写入等问题。运行模式有单机、伪分布式和分布式。NameNode管理文件系统,DataNode存储数据并处理请求。Hadoop为大数据处理提供高效可靠的解决方案。
94 2
|
2天前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
|
2天前
|
分布式计算 数据可视化 Hadoop
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
37 0

热门文章

最新文章