场景化封装,一站式使用,普惠AI集成 ——阿里云发布智能媒体管理产品

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
阿里云盘企业版 CDE,企业版用户数5人 500GB空间
简介: 近日,阿里云发布了智能媒体管理(Intelligent Media Management)服务, 通过离线处理能力关联授权的云存储,提供便捷的海量多媒体数据一键分析,并通过该分析过程构建价值元数据,更好支撑内容检索。

一、导语

近日,阿里云发布了智能媒体管理(Intelligent Media Management)服务, 通过分布式计算处理能力关联授权的云存储,提供便捷的海量多媒体数据一键分析,并通过该分析过程构建价值元数据,更好支撑内容检索。

二、背景介绍

随着智能手机的普及、无人机的流行,业界产生了海量的图片、视频等多媒体数据;同时,网络也在飞速发展,特别是4G的推广,让这些数据的保存、分享发生了巨大的变化,从而也带来了媒体数据各行业的新趋势。我们亲身体验到通信方式从短信变成语音,浏览内容从文字变成图片、从JPG静态图片变成GIF动态图片、再到短视频;从去年开始,直播也火热起来,成为一种流行的时尚。这些迅速的变化趋势,反应了一个共同的特点,就是“交互的信息量越丰富、越实时,用户越容易被吸引,越会产生新的价值”。

行业趋势 | center

如图中所示行业,都在利用最新的人工智能(Artificial Intelligence, AI)技术产生新的价值,同时也引入新的需求:

  • 手机相册。它早已不是简单的图片备份,iOS通过AI构建人脸相册、场景标签、编辑应用,变成吸引客户的亮点,成为新的基线。
  • 视频监控。它不再只是记录取证工具,而是利用AI发展为智慧城市,变成了智慧的眼睛,要管理整个城市的交通信息。
  • 直播应用。个人分享已不仅仅是博客、微博的文本形式,更是转变为快速直观的视频模式,这背后需要更高、更快的直播内容理解、审核需求。

2.1 数据处理场景需求

对于图片分享社区应用场景,最基本的功能是提供备份、分享,但这并不能带来更多的价值。只有提供更多的图片处理能力,比如主体剪裁、人脸识别、滤镜功能、风格渲染、视频合成等数据处理功能,如下图所示。这些亮点将为使用者带来“生活不止眼前的苟且,还有依然在你身边的美好”回忆,从而让应用更具吸引力。

数据处理 | center

2.2 内容检索场景需求

如今的综艺节目非常火爆,例如跑男、极限挑战等,每期拍摄的素材量千倍于实际播出量;要在这海量素材中快速扫描、找到爆点,需要相当大的工作量,例如当前的人肉检索低效率方式需要处理几周的时间。如果能够基于AI分析语音、人物、场景得到结构化信息,并索引管理起来,支撑更好的检索,它将会大大的提高素材的处理效率。

同样,在线教育等领域,对于老师、演讲者的材料、语音、视频内容,如果能够提供快速的解析索引能力,那么它将给学习者提供便捷的专场内容描述、快速定位关键术语、演讲笔记同步提取等亮点。

内容检索 | center

三、客户痛点分析

要满足上述场景需求,当前应用架构设计时,需要选型不同数据处理功能的厂家(包括AI厂家)进行集成、或者自研开发,对于内容检索,还需要分析场景细节需求,引入数据库设计和开发。这都需要很好的技术能力,以及开发团队的支撑,并解决如下的痛点。

3.1 多厂家管理痛点

多厂家管理痛点 | center

图片应用将数据保存到云存储后,要选择不同厂家的AI分析能力,支撑业务和监管的需求。应用通常会在云服务器(Elastic Compute Service,ECS)上部署AI厂家的软件包,或者直接调用AI厂家提供的服务,但需要解决如下问题:

  • 接口不统一。因为存在多厂家的选型,需要考虑不同厂家接口的兼容性。
  • 资源浪费。同一张图片会被多次读取,甚至是传输到外部网络,浪费网络带宽,提高使用成本。
  • 无存量数据的低成本批量处理方案。采用厂商的同步处理价格高昂,需要提供存量数据的低成本批量处理方案,接受异步接口返回检测结果(比如针对存量的OSS桶里面的所有图片,进行批量鉴黄)。

3.2 复杂元数据管理痛点

元数据管理痛点 | center

智能网盘通过自己的用户鉴权服务允许客户登录,然后采用基础数据管理把图片、视频上传到云存储OSS中。为了提供人脸分组、标签分组等搜索功能,需要提供各类元数据管理,定义基于场景的表格式、处理数据库的异常,它将带来如下的开发难度:

  • 元数据表设计难度大。针对不同的元数据,需要分类设计各类表结构存储,有相当的技术门槛。
  • 多维度元数据管理有挑战。需要组合多种元数据,进行多维度查询处理,存在设计挑战。
  • 维护元数据的的一致性难题。解决这些元数据在异常场景下的异常处理,是系统级难题。

四、设计目标

解决痛点为目标 | center

通过上述的场景和痛点分析,智能媒体管理(IMM)服务提取了6个关键点作为设计目标:

  • 海量数据,支撑云存储上的海量数据处理。
  • 端云拉通,能够让端和云进行有效的协作。
  • 场景结合,基于场景构建元数据管理便于快速接入。
  • 一键处理,简化配置和使用、提高系统易用性。
  • 智能分析,引入业界领先的处理能力,特别是AI能力。
  • 标准统一,访问接口统一为阿里云的标准。

4.1 功能描述

功能设计 | center

对于云存储上的海量数据,通过授权访问的安全设计,让数据处理分析服务能够有权限访问数据,在此之上构建数据智能处理框架,该框架针对离线处理优化设计,同时支持实时处理能力。基于该处理框架,引入了业界领先的数据处理能力,包括各种AI能力。利用离线处理能力关联授权的云存储,可以提供便捷的存量数据一键分析,通过该分析过程构建价值元数据,支撑更好的内容检索。通过这样的设计,从而提供如下功能:

  • 普惠AI算法,提供丰富功能。人脸分组、图片打标、版权、鉴黄等能力。
  • 价值元数据,为客户带来新的增长点。整合价值元数据,提供智能分析搜索。
  • OFFICE文档处理,简化客户使用。提供典型的OFFICE文件格式转换,便于移动设备浏览办公文档。
  • 场景化、一键式处理,提高易用性。基于场景模版,结合实时、离线处理引擎,一键生成网盘关键元数据。

五、架构介绍

产品架构 | center

如图是IMM服务的架构依赖上下文,服务本身的架构分为2层:处理引擎、元数据索引。

5.1 架构依赖上下文

  • 对下依赖阿里云的对象存储、文件存储等服务,通过安全的机制访问里面存储的非结构化数据(例如图片、视频),提取价值信息。
  • 对上依赖场景理解,进行封装,支撑视频网盘、手机相册、社交图库、家庭监控等图片、视频应用场景,为它们产生新的价值。

5.2 处理引擎层

基于阿里云存储,就近构建计算框架,该框架支持批量异步处理、准实时同步处理,在一键关联云存储(例如,指定Bucket的目录前缀、指定Bucket的某个对象)后,实现快速的自动数据处理,通过整合业界领先的数据处理算法,处理引擎提供如下功能。

  • OFFICE文档格式转换。支持将OFFICE文档转换为JPG图片格式,从而更好的支持网盘的文档预览功能。
  • 大图处理。支持将超大的图片进行切割、缩放处理,友好的支撑相册、图库场景的精细看图功能。
  • 标签检测。通过人工智能技术,识别图片、视频中的物品标签,从而实现机器的制动打标,更好的支撑推荐应用。
  • 人脸检测。通过人工智能技术,识别图片、视频中的人脸,检测出人脸框,判断人脸姿势、年龄、性别等属性。

5.3 元数据索引层

基于处理引擎提供的功能,通过对场景的深入理解和梳理,IMM封装了场景的元数据设计,对外提供场景的元数据访问接口,简化场景应用的设计难度、无须关注元数据索引数据库的运维工作,目前支持如下的元数据索引。

  • 人脸分组索引。构建元数据集合,然后调用人脸分组的接口分析图片,把得到的元数据加入到该元数据集合中,从而可以得到该集合中相似的人脸。通过该索引,可以快速的支撑网盘的人脸相册、家庭监控的陌生人检测、甚至新零售的顾客管理等场景。
  • 标签分组索引。构建元数据集合,然后调用标签分组的索引接口分析图片,把得到的元数据加入到该元数据集合中,从而可以根据标签搜索图片。通过该索引,可以快速的支撑网盘的场景相册、家庭监控的宠物跟踪、甚至暴力、恐怖、色情图片等标签的搜索。

5.4 调度框架

调度框架 | cente

IMM的所有数据处理请求都在调度框架下执行,例如上述架构中提到的处理引擎层、元数据索引层请求,它由2部分组成:

  • 运行实例(Instance)。运行实例是运行指定数据处理功能的节点,例如运行图片打标功能的节点。它可以是虚拟机、或者Docker,能够采用预留类型、或者Spot竞价类型的实例,支持部署在阿里云的VPC(Virtual Private Cloud)环境,保证数据处理功能的安全性、隔离性。
  • 调度控制器(Schedule Controller)。调度控制器负责把IMM接收到的请求分发到指定功能的实例上,它支持接收同步、异步的请求,提供准实时、离线的调度。针对负载的变化,实现了实例资源池的弹性伸缩、故障处理、自动升级等能力。

当调度框架收到同步的请求时,例如DetectTag进行图片打标分析时。调度框架将会把请求分发到请求队列的Pipeline,然后根据后端实例的节点状态、负载情况快速转发请求,从而达到准实时调度的能力。为了保证请求的低时延,以及请求的成功率,通常选择预留的实例。

当调度框架收到异步的请求时,例如CreateTagJob指定OSS的桶、前缀进行批量的图片打标分析时。调度框架将会把请求放到调度器,调度器遍历OSS桶、前缀的对象,然后生成单个对象的数据处理请求并分发到多个请求队列中,再根据后端实例的节点状态、负载情况快速向多个实例转发请求,从而达到离线调度的能力。为了保证离线调度的成本,通常选择Spot类型的竞价实例。

通过上述调度控制和数据处理分离的架构,调度框架提供如下亮点:

  • 准实时、离线调度。针对离线处理性价比竞争力的优化设计下,也能提供准实时能力,实现数据处理的闭环。
  • 同步、异步请求。支撑一键式的异步处理需求同时,还提供了同步请求的灵活性。
  • 数据处理能力的安全性。利用VPC部署数据处理的实例,保证了资源的隔离、安全的屏蔽。

六、如何使用

IMM提供控制台操作和API接口,通过控制台快速的创建IMM的项目,然后体验IMM的数据处理功能。

6.1 控制台使用

控制台1 | center

登录阿里云控制台,执行如下操作:

  • 第一步,开通智能媒体管理服务。开通后,即可使用IMM提供的功能。
  • 第二步,创建项目。使用IMM必须要创建项目,它是IMM资源管理、计费的基本单元。

控制台2 | center

创建了项目,就可以体验IMM支持的功能:

  • 格式预览。支持OFFICE文档转换,并用图片方式预览。
  • 人脸检测。检测照片中的人脸,识别年龄、性别,眼部状态信息。
  • 图片打标。检测图片包含的标签信息,以及置信度值。

详细的控制台使用介绍,请参考 IMM 快速开始

6.2 API使用

6.2.1 IMM的API调用方法

调用IMM的API需要遵守阿里云的API规范,请参考 IMM API 调用,请您注意调用时的参数,特别是签名。

如下是IMM典型功能的API调用示例。

6.2.2 文件格式转换CreateFormatConvertJob

POST https://imm.cn-shanghai.aliyuncs.com?Action=CreateFormatConvertJob
&Project=test
&SrcUri="oss://bucket1/test.pptx"
&TgtType=jpg
&TgtUri="oss://bucket1/imm-format-convert-tgt/session123/"
&ExternalID=aaa

该功能接口的详细信息,请参考 CreateFormatConvertJob

6.2.3 图片打标DetectTag

POST https://imm.cn-shanghai.aliyuncs.com?Action=DetectTag
&Project=test
&SrcUri=["oss://bucket1/1.jpg"]

该功能接口的详细信息,请参考 DetectTag。

6.2.4 人脸检测DetectFace

POST https://imm.cn-shanghai.aliyuncs.com?Action=DetectFace
&Project=test
&SrcUri=["oss://bucket1/A.jpg"]

该功能接口的详细信息,请参考 DetectFace。

七、立即体验

现在产品已经在阿里云官网正式开始公测,点击这里 立即体验

八、后续规划

下一阶段,IMM将和OSS集成拉通:

  • 在OSS控制台集成IMM功能。实现OFFICE文档的预览,媒体对象的AI功能。
  • 在OSS提供存量数据的IMM处理对接。可以通过OSS的控制台,选择某个桶或者其目录,调用IMM的批量异步任务,例如批量鉴黄,从而享受高性价比、便捷的数据处理。
  • 在OSS的API中拉通。调用oss的x-oss-process处理引擎时,调用到IMM的API进行处理。

通过这样端的端的集成,从而让您在云上的管理更加易用。

九、相关文档

  1. 智能媒体管理产品文档转换/预览功能介绍(1)---Cloud Native架构篇
  2. 智能媒体管理产品文档转换/预览功能介绍(2)---转换原理篇
  3. 智能媒体管理产品文档转换/预览功能介绍(3)---前端预览篇
目录
相关文章
|
28天前
|
人工智能 JSON 自然语言处理
基于阿里云通义千问的AI模型应用开发指南
阿里云通义千问是阿里巴巴集团推出的多模态大语言模型平台,提供了丰富的API和接口,支持多种AI应用场景,如文本生成、图像生成和对话交互等。本文将详细介绍阿里云通义千问的产品功能,并展示如何使用其API来构建一个简单的AI应用,包括程序代码和具体操作流程,以帮助开发者快速上手。
428 3
|
17天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
75 2
|
30天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
30天前
|
人工智能 自然语言处理 机器人
对话阿里云 CIO 蒋林泉:AI 时代,企业如何做好智能化系统建设?
10 月 18 日, InfoQ《C 位面对面》栏目邀请到阿里云 CIO 及 aliyun.com 负责人蒋林泉(花名:雁杨),就 AI 时代企业 CIO 的角色转变、企业智能化转型路径、AI 落地实践与人才培养等主题展开了讨论。
792 67
对话阿里云 CIO 蒋林泉:AI 时代,企业如何做好智能化系统建设?
|
24天前
|
存储 人工智能 自然语言处理
Elasticsearch Inference API增加对阿里云AI的支持
本文将介绍如何在 Elasticsearch 中设置和使用阿里云的文本生成、重排序、稀疏向量和稠密向量服务,提升搜索相关性。
65 14
Elasticsearch Inference API增加对阿里云AI的支持
|
21天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
17天前
|
人工智能 Cloud Native 数据管理
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
17天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
11天前
|
人工智能 架构师
活动火热报名中|阿里云&Elastic:AI Search Tech Day
2024年11月22日,阿里云与Elastic联合举办“AI Search Tech Day”技术思享会活动。
157 2
|
11天前
|
存储 人工智能 大数据
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。

相关产品

  • 智能媒体管理