[詹兴致矩阵论习题参考解答]习题7.5

简介: 5. 元素属于 $\sed{0,*}$ 的矩阵称为零模式矩阵. 设 $A$ 是零模式矩阵, 用 $Q_\bbF(A)$ 记元素属于域 $\bbF$ 的具有零模式 $A$ 的矩阵的集合, 即若 $B\in Q_F(A)$, $B=(b_{ij})$, $A=(a_{ij})$, 则 $b_{ij}=0$ 当且仅当 $a_{ij}=0$.

5. 元素属于 $\sed{0,*}$ 的矩阵称为零模式矩阵. 设 $A$ 是零模式矩阵, 用 $Q_\bbF(A)$ 记元素属于域 $\bbF$ 的具有零模式 $A$ 的矩阵的集合, 即若 $B\in Q_F(A)$, $B=(b_{ij})$, $A=(a_{ij})$, 则 $b_{ij}=0$ 当且仅当 $a_{ij}=0$. 设 $\bbF$ 的元素不少于 $3$ 个. 证明: $Q_\bbF(A)$ 中的每个矩阵非奇异当且仅当 $A$ 置换等价于一个对角元素非零的上三角矩阵.

 

 

 

证明: $\la$: 这很显然. 因为此时对 $\forall\ B\in Q_\bbF(A)$, 其行列式的标准展开式中只有一项不为零. $\ra$: 类似于定理 7.2, $A$ 符号非奇异当且仅当 $\forall\ B\in Q_\bbF(A)$, $B$ 的行列式的标准展开式中只有一项不为零. 事实上, 若有两项非零, 则稍微改下某元素的正负号, 大小即可使 $\det B=0$. 设 $\det B$ 的标准展开式中不为零的项为 $b_{1\sigma(1)},\cdots, b_{n\sigma(n)}$, 则存在置换阵 $P$, 使得 $$\bex PB=\sex{\ba{ccc} c_{11}&&*\\ &\ddots&\\ *&&c_{nn} \ea}\equiv C,\quad c_{ii}=b_{i\sigma(i)}. \eex$$ 对 $1\leq i<j\leq n$, 考虑 $C$ 的展开式中 $$\bex c_{11}\cdots c_{i-1,i-1}c_{ij} c_{i+1,i+1}\cdots c_{j-1,j-1} c_{ji} c_{j+1,j+1}\cdots c_{nn}=0, \eex$$ 而 $$\bex c_{ij}=0\mbox{ 或 }c_{ji}=0. \eex$$ 这样, 不断的对第一行第一列相应的元素进行分析, 我们知 $C$ 的第一行或第一列除第一个元素为均为零. 同理, $C$ 的第二行或第二列除前两个元素外均为零. 等等. 经过行列置换, 我们即发现 $C$ 是以 $c_{ii}$ 为对角元的上三角阵.

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.3
3. 一个 $n$ 阶符号模式方阵 $A$ 称为谱任意模式, 如果每个首一的 $n$ 次实多项式都是 $Q(A)$ 中某个矩阵的特征多项式. 研究谱任意模式.       证明: Open problems.
540 0
[詹兴致矩阵论习题参考解答]习题6.11
11. (Gasca-Pena) 一个 $n$ 阶可逆矩阵 $A$ 是全面非负的当且仅当对每个 $1\leq k\leq n$, $$\bex \det A[1,2,\cdots,k]>0, \eex$$ $$\bex \det A[\al\mid 1,2,\cdots,k]\geq 0,\quad...
574 0
[詹兴致矩阵论习题参考解答]习题6.13
13. (Sinkhorn) 设 $A$ 是一个方的正矩阵, 则存在对角元素为正数的两个对角矩阵 $D_1$ 和 $D_2$ 使得 $D_1AD_2$ 为双随机矩阵 (doubly stochastic matrix).
603 0
[詹兴致矩阵论习题参考解答]习题6.2
2. 设 $A$ 是个非负方阵且存在一个正整数 $p$ 使得 $A^p>0$, 则对所有正整数 $q\geq p$, $A^q>0$.       证明: 不妨设 $n\geq 2$. 由定理 6.
627 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 $A$ 是个不可约奇异 $M$-矩阵, 则存在正向量 $x$ 满足 $Ax=0$.       证明: 由 $A$ 为 $M$-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
630 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 $A$ 是个不可约非负方阵, 则函数 $$\bex f(t)=\rho[tA+(1-t)A^T] \eex$$ 在 $[0,1/2]$ 上递增, 在 $[1/2,1]$ 上递减.
524 0
[詹兴致矩阵论习题参考解答]习题5.1
1. $A\in M_n$ 称为正交投影矩阵如果 $A$ 是 Hermite 矩阵且幂等: $$\bex A^*=A=A^2. \eex$$ 证明: 若 $A,B\in M_n$ 为正交投影矩阵, 则 $\sen{A-B}_\infty \leq 1$.
715 0
[詹兴致矩阵论习题参考解答]习题4.5
5. 设 $A,B\in M_n$, 则 $$\bex s_j(AB)\leq \sen{A}_\infty s_j(B),\quad s_j(AB)\leq \sen{B}_\infty s_j(A),\quad j=1,\cdots,n.
547 0
[詹兴致矩阵论习题参考解答]习题4.14
14. 设 $A,B\in M_n$, 则对 $M_n$ 上的任何酉不变范数有 $$\bex \frac{1}{2}\sen{\sex{\ba{cc} A+B&0\\ 0&A+B \ea}}\leq \sen{\sex{\ba{cc} A&0\\ 0&B \ea}} \leq \sen{\sex{\ba{cc} |A|+|B|&0\\ 0&0 \ea}}.
671 0
[詹兴致矩阵论习题参考解答]习题4.1
1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.
520 0