2. 设 $A$ 是个非负方阵且存在一个正整数 $p$ 使得 $A^p>0$, 则对所有正整数 $q\geq p$, $A^q>0$.
证明: 不妨设 $n\geq 2$. 由定理 6.26 (Frobenius), $A$ 本原, 而不可约, $A$ 的每一行都有一个正元素. 由此, $$\bex (A^{p+1})_{ij}=(AA^p)_{ij} =\sum_{k=1}^n a_{ik}(A^p)_{kj}>0. \eex$$ 同样的道理, $A^{p+2}>0$, $\cdots$.