[詹兴致矩阵论习题参考解答]习题4.1

简介: 1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n.

1. (Fan-Hoffman). 设 $A\in M_n$, 记 $\Re A=(A+A^*)/2$. 则 $$\bex \lm_j(\Re A)\leq s_j(A),\quad j=1,\cdots,n. \eex$$

 

 

 

证明: 对适合 $\sen{x}=1$ 的 $x\in\bbC^n$, $$\beex \bea x^*(\Re A)x&= x^*\frac{A+A^*}{2}x\\ &=\frac{1}{2}(x^*Ax+x^*A^*x)\\ &=\Re (x^*Ax)\quad\sex{z\in\bbC\ra z^*=\bar z}\\ &\leq |x^*Ax|\\ &=|\sef{Ax,x}|\\ &\leq \sen{Ax}. \eea \eeex$$ 于是由 Courant-Fischer 极小极大刻画, $$\beex \bea \lm_j(\Re A)&=\max_{S\subset \bbC^n\atop \dim S=j} \min_{x\in S\atop \sen{x}=1} x^*(\Re A)x\\ &\leq \max_{S\subset \bbC^n\atop \dim S=j} \min_{x\in S\atop \sen{x}=1} \sen{Ax}\\ &=s_j(A). \eea \eeex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.4
4. 怎样的符号模式要求所有特征值都互不相同呢?       证明: Open problems.
476 0
[詹兴致矩阵论习题参考解答]习题6.14
14. (Shao) 设非负方阵 $A$ 具有 (6.22) 的形式并且 $A$ 没有零行也没有零列. 证明: $A$ 不可月且非本原指标为 $k$ 当且仅当乘积 $$\bex A_{12}A_{23}\cdots A_{k-1,k}A_{k1} \eex$$ 是本原矩阵.
514 0
[詹兴致矩阵论习题参考解答]习题6.12
12. 设 $A$ 是个 $n$ 阶振荡矩阵, 则 $A^{n-1}$ 是全面正矩阵.       证明: 我相信可以利用定理 6.27 (Wielandt) 或者其证明思路, 但是目前还没有做出来.
584 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.8
8. 设 $A$ 是个不可约奇异 $M$-矩阵, 则存在正向量 $x$ 满足 $Ax=0$.       证明: 由 $A$ 为 $M$-矩阵知 $$\bex A=cI-B,\quad c\geq \rho(B),\quad B\geq 0.
627 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 $A$ 是个不可约非负方阵, 则函数 $$\bex f(t)=\rho[tA+(1-t)A^T] \eex$$ 在 $[0,1/2]$ 上递增, 在 $[1/2,1]$ 上递减.
519 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题6.3
3. 设 $\lm$ 是一个复数. 证明: 存在非负方阵 $A$ 使得 $\lm$ 是 $A$ 的一个特征值.       证明:   (1). 首先 $A$ 的阶数须 $\geq 3$. 当 $n=1$ 时, 非负方阵的特征值为非负实数.
693 0
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
555 0
|
Perl
[詹兴致矩阵论习题参考解答]习题5.2
2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty
565 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
737 0
[詹兴致矩阵论习题参考解答]习题4.5
5. 设 $A,B\in M_n$, 则 $$\bex s_j(AB)\leq \sen{A}_\infty s_j(B),\quad s_j(AB)\leq \sen{B}_\infty s_j(A),\quad j=1,\cdots,n.
541 0