[詹兴致矩阵论习题参考解答]习题5.1

简介: 1. $A\in M_n$ 称为正交投影矩阵如果 $A$ 是 Hermite 矩阵且幂等: $$\bex A^*=A=A^2. \eex$$ 证明: 若 $A,B\in M_n$ 为正交投影矩阵, 则 $\sen{A-B}_\infty \leq 1$.

1. $A\in M_n$ 称为正交投影矩阵如果 $A$ 是 Hermite 矩阵且幂等: $$\bex A^*=A=A^2. \eex$$ 证明: 若 $A,B\in M_n$ 为正交投影矩阵, 则 $\sen{A-B}_\infty \leq 1$.

 

 

证明: 由 $A^*=A$ 知 $A$ 可酉对角化. 又由 $A^2=A$ 知 $A$ 的特征值为 $0$ 或 $1$. 故存在酉阵 $U$ 使得 $$\bex A=U^*\diag(I_r,0)U,\quad r=\rank(A). \eex$$ 这样, $$\beex \bea x^*Ax&=x^*U^*\diag(I_r,0)Ux\\ &=y^*\diag(I_r,0)y\quad\sex{y=Ux}\\ &=\sum_{i=1}^r |y_i|^2\\ &\in \sez{0,\sen{x}^2}. \eea \eeex$$ 同理, $$\bex x^*Bx\in \sez{0,\sen{x}^2}. \eex$$ 因为 $A-B$ 为 Hermite 阵, $$\bex \sen{A-B}_\infty=s_1(A-B)=\max_i|\lm_i(A-B)|. \eex$$ 设 $\lm$ 为 $A-B$ 的任一特征值, $0\neq x\in\bbC^n$ 为其对应的特征向量, 则 $$\beex \bea (A-B)x&=\lm x,\\ |\lm|&=\frac{|x^*(A-B)x|}{\sen{x}^2}\\ &=\sev{\frac{x^*Ax}{\sen{x}^2} -\frac{x^*Bx}{\sen{x}^2}}\\ &\in\sez{0,1}, \eea \eeex$$ 最后一步是因为 $$\bex 0\leq s\leq 1,\quad 0\leq t\leq 1\ra -1\leq s-t\leq 1\ra |s-t|\leq 1. \eex$$ 故 $$\bex \sen{A-B}_\infty=\max_i|\lm_i(A-B)|\leq 1. \eex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.2
2. 证明引理 7.13.       证明: 用反证法. 若对任一置换阵 $P$, $PA$ 的对角元都至少有一个为零, 则 $A$ 的每条对角线至少含有一个零元素. 由 Frobenius-K\"onig 定理, $A$ 有一个 $r\times s$ 阶的零子矩阵, $r+s=n+1$.
601 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 $A$ 是个不可约非负方阵, 则函数 $$\bex f(t)=\rho[tA+(1-t)A^T] \eex$$ 在 $[0,1/2]$ 上递增, 在 $[1/2,1]$ 上递减.
504 0
|
资源调度 Perl
[詹兴致矩阵论习题参考解答]习题5.4
4. (G.M. Krause) 令 $$\bex \lm_1=1,\quad \lm_2=\frac{4+5\sqrt{3}I}{13},\quad \lm_3=\frac{-1+2\sqrt{3}i}{13},\quad v=\sex{\sqrt{\frac{5}{8}},\frac{1}{2},\sqrt{\frac{1}{8}}}^T.
713 0
|
Perl
[詹兴致矩阵论习题参考解答]习题5.2
2. 用 $\im A$ 表示 $A\in M_n$ 的像空间: $$\bex \im A=\sed{Ax;x\in\bbC^n}. \eex$$ 设 $A,B\in M_n$ 为正交投影矩阵, 满足 $$\bex \sen{A-B}_\infty
548 0
|
Perl
[詹兴致矩阵论习题参考解答]习题4.3
3. $G\in M_n$ 称为一个秩 $k$ 部分等距矩阵, 若 $$\bex s_1(G)=\cdots=s_k(G)=1,\quad s_{k+1}(G)=\cdots=s_n(G)=0. \eex$$ 证明对 $X\in M_n$, $$\bex \sum_{j=1}^k s_j(X) =\...
666 0
[詹兴致矩阵论习题参考解答]习题4.12
12. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 则对 $A,B\in M_n$ 和酉不变范数有 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}.
585 0
[詹兴致矩阵论习题参考解答]习题4.13
13. (Bhatia-Davis) 设 $A,B,X\in M_n$, 则 $$\bex \sen{AXB^*}\leq \frac{1}{2}\sen{A^*AX+XB^*B} \eex$$ 对任何酉不变范数成立.
519 0
[詹兴致矩阵论习题参考解答]习题4.7
7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j
689 0
[詹兴致矩阵论习题参考解答]习题4.8
8. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 设 $x,y\in \bbR^n_+$, 则对 $\bbR^n$ 上的任何对称规度函数 $\varphi$ 有 $$\bex \varphi(x\circ y)\leq [\varphi(x...
557 0
|
机器学习/深度学习
[詹兴致矩阵论习题参考解答]习题3.1
1. 设 $A\in M_n$. 证明若 $AA^*=A^2$, 则 $A^*=A$.     证明: 由 Schur 酉三角化定理, 存在酉阵 $U$, 使得 $$\bex A=U^*BU, \eex$$ 其中 $B=(b_{ij})$ 为上三角阵.
581 0