[詹兴致矩阵论习题参考解答]习题7.3

简介: 3. 一个 $n$ 阶符号模式方阵 $A$ 称为谱任意模式, 如果每个首一的 $n$ 次实多项式都是 $Q(A)$ 中某个矩阵的特征多项式. 研究谱任意模式.       证明: Open problems.

3. 一个 $n$ 阶符号模式方阵 $A$ 称为谱任意模式, 如果每个首一的 $n$ 次实多项式都是 $Q(A)$ 中某个矩阵的特征多项式. 研究谱任意模式.

 

 

 

证明: Open problems.

目录
相关文章
[詹兴致矩阵论习题参考解答]习题6.14
14. (Shao) 设非负方阵 $A$ 具有 (6.22) 的形式并且 $A$ 没有零行也没有零列. 证明: $A$ 不可月且非本原指标为 $k$ 当且仅当乘积 $$\bex A_{12}A_{23}\cdots A_{k-1,k}A_{k1} \eex$$ 是本原矩阵.
514 0
|
资源调度 机器学习/深度学习 Perl
[詹兴致矩阵论习题参考解答]习题7.5
5. 元素属于 $\sed{0,*}$ 的矩阵称为零模式矩阵. 设 $A$ 是零模式矩阵, 用 $Q_\bbF(A)$ 记元素属于域 $\bbF$ 的具有零模式 $A$ 的矩阵的集合, 即若 $B\in Q_F(A)$, $B=(b_{ij})$, $A=(a_{ij})$, 则 $b_{ij}=0$ 当且仅当 $a_{ij}=0$.
706 0
[詹兴致矩阵论习题参考解答]习题6.15
15. (Hu-Li-Zhan) 秩为 $k$ 的 $n$ 阶对称 $0-1$ 矩阵中 $1$ 的个数可能是哪些数呢?       解答: 见 [Q. Hu, Y.Q. Li, X.Z. Zhan, Possible numbers of ones in $0-1$ matrices wit...
581 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.1
1. 怎样的非负矩阵可逆并且其逆也非负?       解答: 设 $A\geq0$ 可逆, 且其逆 $A^{-1}=B\geq 0$. 则 $$\bex I_n=AB=BA. \eex$$ 对 $A$ 的第 $i$ ($1\leq i\leq n$) 列, 由 $A$ 可逆知 $$\bex \exists\ j,\st a_{ij}>0.
522 0
|
vr&ar
[詹兴致矩阵论习题参考解答]习题6.6
6. 设 $A$ 是个非负本原方阵, 则 $$\bex \vlm{k} [\rho(A)^{-1}A]^k =xy^T, \eex$$ 其中 $x$ 和 $y$ 分别是 $A$ 和 $A^T$ 的 Perron 根, 满足 $xy^T=1$.
546 0
[詹兴致矩阵论习题参考解答]习题6.5
5. (Levinger, 1970) 设 $A$ 是个不可约非负方阵, 则函数 $$\bex f(t)=\rho[tA+(1-t)A^T] \eex$$ 在 $[0,1/2]$ 上递增, 在 $[1/2,1]$ 上递减.
520 0
|
资源调度
[詹兴致矩阵论习题参考解答]习题6.7
7. 设 $A$ 是个非负幂零矩阵, 即存在正整数 $p$ 使得 $A^p=0$. 则 $A$ 置换相似于一个上三角矩阵.       证明: 由 $A^p=0$ 知 $\sigma(A)=0$, 而 $\rho(A)=0$.
771 0
[詹兴致矩阵论习题参考解答]习题4.11
11. $M_n$ 上的范数 $\sen{\cdot}$ 称为是对称的, 若 $$\bex \sen{ABC}\leq \sen{A}_\infty\sen{C}_\infty \sen{B},\quad \forall\ A,B,C\in M_n.
584 0
[詹兴致矩阵论习题参考解答]习题4.7
7. 设 $A_0\in M_n$ 正定, $A_i\in M_n$ 半正定, $i=1,\cdots,k$, 则 $$\bex \tr \sum_{j=1}^k \sex{\sum_{i=0}^jA_i}^{-2}A_j
710 0
[詹兴致矩阵论习题参考解答]习题4.15
15. (Fan-Hoffman) 设 $A,H\in M_n$, 其中 $H$ 为 Hermite 矩阵, 则 $$\bex \sen{A-\Re A}\leq \sen{A-H} \eex$$ 对任何酉不变范数成立.
608 0