细数二十世纪最伟大的10大算法

简介: 导读:作者July总结了一篇关于计算方法的文章《细数二十世纪最伟大的10大算法》,此文只是本人对算法比较感兴趣,所以也做翻译,学习研究下。以下是文章内容:发明十大算法的其中几位算法大师一、1946 蒙特卡洛方法[1946: John von Neumann, Stan Ulam, and N...

导读:作者July总结了一篇关于计算方法的文章《细数二十世纪最伟大的10大算法》,此文只是本人对算法比较感兴趣,所以也做翻译,学习研究下。以下是文章内容:

发明十大算法的其中几位算法大师

一、1946 蒙特卡洛方法

[1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]

1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis共同发明,被称为蒙特卡洛方法。

它的具体定义是:

在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。

蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。

二、1947 单纯形法

[1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.]

1947年,兰德公司的,Grorge Dantzig,发明了单纯形方法。单纯形法,此后成为了线性规划学科的重要基石。所谓线性规划,简单的说,就是给定一组线性(所有变量都是一次幂)约束条件(例如a1*x1+b1*x2+c1*x3>0),求一个给定的目标函数的极值。

这么说似乎也太太太抽象了,但在现实中能派上用场的例子可不罕见——比如对于一个公司而言,其能够投入生产的人力物力有限(“线性约束条件”),而公司的目标是利润最大化(“目标函数取最大值”),看,线性规划并不抽象吧!

线性规划作为运筹学(operation research)的一部分,成为管理科学领域的一种重要工具。

而Dantzig提出的单纯形法便是求解类似线性规划问题的一个极其有效的方法。

三、1950 Krylov子空间迭代法

[1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.]

1950年:美国国家标准局数值分析研究所的,马格努斯Hestenes,爱德华施蒂费尔和科尼利厄斯的Lanczos,发明了Krylov子空间迭代法。

Krylov子空间迭代法是用来求解形如Ax=b 的方程,A是一个n*n 的矩阵,当n充分大时,直接计算变得非常困难,而Krylov方法则巧妙地将其变为Kxi+1=Kxi+b-Axi的迭代形式来求解。这里的K(来源于作者俄国人Nikolai Krylov姓氏的首字母)是一个构造出来的接近于A的矩阵,而迭代形式的算法的妙处在于,它将复杂问题化简为阶段性的易于计算的子步骤。

四、1951 矩阵计算的分解方法

[1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach to matrix computations.]

1951年,阿尔斯通橡树岭国家实验室的Alston Householder提出,矩阵计算的分解方法。这个算法证明了任何矩阵都可以分解为三角、对角、正交和其他特殊形式的矩阵,该算法的意义使得开发灵活的矩阵计算软件包成为可能。

五、1957 优化的Fortran编译器

[1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.]

1957年:约翰巴库斯领导开发的IBM的团队,创造了Fortran优化编译器。Fortran,亦译为福传,是由Formula Translation两个字所组合而成,意思是“公式翻译”。它是世界上第一个被正式采用并流传至今的高级编程语言。这个语言现在,已经发展到了,Fortran 2008,并为人们所熟知。

六、1959-61 计算矩阵特征值的QR算法

[1959–61: J.G.F. Francis of Ferranti Ltd, London, finds a stable method for computingeigenvalues, known as the QR algorithm.]

1959-61:伦敦费伦蒂有限公司的J.G.F. Francis,找到了一种稳定的特征值的计算方法,这就是著名的QR算法。

这也是一个和线性代数有关的算法,学过线性代数的应该记得“矩阵的特征值”,计算特征值是矩阵计算的最核心内容之一,传统的求解方案涉及到高次方程求根,当问题规模大的时候十分困难。QR算法把矩阵分解成一个正交矩阵(希望读此文的你,知道什么是正交矩阵。:D。)与一个上三角矩阵的积,和前面提到的Krylov 方法类似,这又是一个迭代算法,它把复杂的高次方程求根问题化简为阶段性的易于计算的子步骤,使得用计算机求解大规模矩阵特征值成为可能。

这个算法的作者是来自英国伦敦的J.G.F. Francis。

七、1962 快速排序算法

[1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.]

1962年:托尼埃利奥特兄弟有限公司,伦敦,霍尔提出了快速排序。

哈哈,恭喜你,终于看到了可能是你第一个比较熟悉的算法~。

快速排序算法作为排序算法中的经典算法,它被应用的影子随处可见。

快速排序算法最早由Tony Hoare爵士设计,它的基本思想是将待排序列分为两半,左边的一半总是“小的”,右边的一半总是“大的”,这一过程不断递归持续下去,直到整个序列有序。说起这位Tony Hoare爵士,快速排序算法其实只是他不经意间的小小发现而已,他对于计算机贡献主要包括形式化方法理论,以及ALGOL60 编程语言的发明等,他也因这些成就获得1980 年图灵奖。

关于快速排序算法的具体认识与应用,请参考我写的一篇文章,精通八大排序算法系列。

一、快速排序算法:

http://blog.csdn.net/v_JULY_v/archive/2011/01/04/6116297.aspx

快速排序的平均时间复杂度仅仅为O(Nlog(N)),相比于普通选择排序和冒泡排序等而言,实在是历史性的创举。

八、1965 快速傅立叶变换

[1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of PrincetonUniversity and AT&T Bell Laboratories unveil the fast Fourier transform.]

1965年:IBM 华生研究院的James Cooley,和普林斯顿大学的John Tukey,AT&T贝尔实验室共同推出了快速傅立叶变换。

快速傅立叶算法是离散傅立叶算法(这可是数字信号处理的基石)的一种快速算法,其时间复杂度仅为O(Nlog(N));比时间效率更为重要的是,快速傅立叶算法非常容易用硬件实现,因此它在电子技术领域得到极其广泛的应用。

九、1977 整数关系探测算法

[1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integerrelation detection algorithm.]

1977年:Helaman Ferguson和 伯明翰大学的Rodney Forcade,提出了Forcade检测算法的整数关系。

整数关系探测是个古老的问题,其历史甚至可以追溯到欧几里德的时代。具体的说:给定—组实数X1,X2,...,Xn,是否存在不全为零的整数a1,a2,...an,使得:a1 x 1 +a2 x2 + . . . + an xn =0?这一年BrighamYoung大学的Helaman Ferguson 和Rodney Forcade解决了这一问题。该算法应用于“简化量子场论中的Feynman图的计算”。

十、1987 快速多极算法

[1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipolealgorithm.]

1987年:莱斯利的Greengard,和耶鲁大学的Rokhlin发明了快速多极算法。

此快速多极算法用来计算“经由引力或静电力相互作用的N 个粒子运动的精确计算——例如银河系中的星体,或者蛋白质中的原子间的相互作用”。ok,了解即可。

原文链接:http://blog.csdn.net/v_JULY_v/archive/2011/01/10/6127953.aspx

目录
相关文章
|
存储 算法 数据库
细数各大唯一id生成算法
一、序言几乎所有的业务系统,都有生成一个唯一id的需求,例如: 1.订单号2.活动id3.消息id这个记录标识往往就是数据库中的唯一主键,也可以作为唯一索引。这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页的聊天记录:select * by message_id/ order by gmt_create/ limit 100 (2)拉取最近的一百条流水:selec
368 0
细数各大唯一id生成算法
|
算法 前端开发 rax
举轻若重,于无声处听惊雷,那些平平无奇的伟大算法
遥想笔者读大学时在技术讨论时多是储如i+=(++i)+(i++)之类的孔乙己式的问题,而最近我们关注的热点要不是删库跑路坐牢的程序员,要不是员工离职倾向分析系统;而反观国外大神的博客,要不就是这种切入点非常简单,但是最终能够升华至编程之道层面的举轻若重的文章,要不就是秀出那些智商碾压的神仙代码,从这个角度上看我们国内的IT技术氛围还有极大的提升空间。
举轻若重,于无声处听惊雷,那些平平无奇的伟大算法
|
传感器 数据采集 人工智能
细数从Al算法到产品化落地的八大鸿沟
AI产业要真正产生价值,推动社会发展,面临着很多的挑战。从AI算法到产品化落地存在巨大的挑战,可以总结为八大鸿沟。
573 0
细数从Al算法到产品化落地的八大鸿沟
|
机器学习/深度学习 算法 搜索推荐
|
算法 数据安全/隐私保护
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
2天前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
3天前
|
编解码 算法 数据挖掘
基于MUSIC算法的六阵元圆阵DOA估计matlab仿真
该程序使用MATLAB 2022a版本实现基于MUSIC算法的六阵元圆阵DOA估计仿真。MUSIC算法通过区分信号和噪声子空间,利用协方差矩阵的特征向量估计信号到达方向。程序计算了不同角度下的MUSIC谱,并绘制了三维谱图及对数谱图,展示了高分辨率的DOA估计结果。适用于各种形状的麦克风阵列,尤其在声源定位中表现出色。
|
8天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。