细数二十世纪最伟大的十大算法

简介:


发明十大算法的其中几位算法大师


◆ ◆ 

一、1946 蒙特卡洛方法


[1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]


1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis共同发明,被称为蒙特卡洛方法。


它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?


蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。


在这里我们要假定豆子都在一个平面上,相互之间没有重叠。(撒黄豆只是一个比喻。) 蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,内接圆面积和正方形面积之比为PI:4,PI为圆周率。当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。


◆ ◆ 

二、1947 单纯形法


[1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.]


1947年,兰德公司的,Grorge Dantzig,发明了单纯形方法。


单纯形法,此后成为了线性规划学科的重要基石。


所谓线性规划,简单的说,就是给定一组线性(所有变量都是一次幂)约束条件(例如a1*x1+b1*x2+c1*x3>0),求一个给定的目标函数的极值。


这么说似乎也太太太抽象了,但在现实中能派上用场的例子可不罕见——比如对于一个公司而言,其能够投入生产的人力物力有限(“线性约束条件”),而公司的目标是利润最大化(“目标函数取最大值”),看,线性规划并不抽象吧!


线性规划作为运筹学(operation research)的一部分,成为管理科学领域的一种重要工具。而Dantzig提出的单纯形法便是求解类似线性规划问题的一个极其有效的方法。


◆ ◆ 

三、1950 Krylov子空间迭代法


[1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.]


1950年:美国国家标准局数值分析研究所的,马格努斯Hestenes,爱德华施蒂费尔和科尼利厄斯的Lanczos,发明了Krylov子空间迭代法。


Krylov子空间迭代法是用来求解形如Ax=b 的方程,A是一个n*n 的矩阵,当n充分大时,直接计算变得非常困难,而Krylov方法则巧妙地将其变为Kxi+1=Kxi+b-Axi的迭代形式来求解。


这里的K(来源于作者俄国人Nikolai Krylov姓氏的首字母)是一个构造出来的接近于A的矩阵,而迭代形式的算法的妙处在于,它将复杂问题化简为阶段性的易于计算的子步骤。


◆ ◆ 

四、1951 矩阵计算的分解方法


[1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach to matrix computations.]


1951年,阿尔斯通橡树岭国家实验室的Alston Householder提出,矩阵计算的分解方法。这个算法证明了任何矩阵都可以分解为三角、对角、正交和其他特殊形式的矩阵,该算法的意义使得开发灵活的矩阵计算软件包成为可能。


◆ ◆ 

五、1957 优化的Fortran编译器


[1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.]


1957年:约翰巴库斯领导开发的IBM的团队,创造了Fortran优化编译器。Fortran,亦译为福传,是由Formula Translation两个字所组合而成,意思是“公式翻译”。它是世界上第一个被正式采用并流传至今的高级编程语言。这个语言现在,已经发展到了,Fortran 2008,并为人们所熟知。


◆ ◆ 

六、1959-61 计算矩阵特征值的QR算法


[1959–61: J.G.F. Francis of Ferranti Ltd, London, finds a stable method for computing eigenvalues, known as the QR algorithm.]


1959-61:伦敦费伦蒂有限公司的J.G.F. Francis,找到了一种稳定的特征值的计算方法,这就是著名的QR算法。这也是一个和线性代数有关的算法,学过线性代数的应该记得“矩阵的特征值”,计算特征值是矩阵计算的最核心内容之一,传统的求解方案涉及到高次方程求根,当问题规模大的时候十分困难。


QR算法把矩阵分解成一个正交矩阵(希望读此文的你,知道什么是正交矩阵。:D。)与一个上三角矩阵的积,和前面提到的Krylov 方法类似,这又是一个迭代算法,它把复杂的高次方程求根问题化简为阶段性的易于计算的子步骤,使得用计算机求解大规模矩阵特征值成为可能。这个算法的作者是来自英国伦敦的J.G.F. Francis。


◆ ◆ 

七、1962 快速排序算法


[1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.]


1962年:伦敦的,托尼埃利奥特兄弟有限公司,霍尔提出了快速排序。哈哈,恭喜你,终于看到了可能是你第一个比较熟悉的算法~。


快速排序算法作为排序算法中的经典算法,它被应用的影子随处可见。快速排序算法最早由Tony Hoare爵士设计,它的基本思想是将待排序列分为两半,左边的一半总是“小的”,右边的一半总是“大的”,这一过程不断递归持续下去,直到整个序列有序。


说起这位Tony Hoare爵士,快速排序算法其实只是他不经意间的小小发现而已,他对于计算机贡献主要包括形式化方法理论,以及ALGOL60 编程语言的发明等,他也因这些成就获得1980 年图灵奖。快速排序的平均时间复杂度仅仅为O(Nlog(N)),相比于普通选择排序和冒泡排序等而言,实在是历史性的创举。


◆ ◆ 

八、1965 快速傅立叶变换


[1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeton University and AT&T; Bell Laboratories unveil the fast Fourier transform.]


1965年:IBM 华生研究院的James Cooley,和普林斯顿大学的John Tukey,AT&T贝尔实验室共同推出了快速傅立叶变换。快速傅立叶算法是离散傅立叶算法(这可是数字信号处理的基石)的一种快速算法,其时间复杂度仅为O(Nlog(N));比时间效率更为重要的是,快速傅立叶算法非常容易用硬件实现,因此它在电子技术领域得到极其广泛的应用。日后,我会在我的经典算法研究系列,着重阐述此算法。


◆ ◆ 

九、1977 整数关系探测算法


[1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integerrelation detection algorithm.]


1977年:Helaman Ferguson和 伯明翰大学的Rodney Forcade,提出了Forcade检测算法的整数关系。


整数关系探测是个古老的问题,其历史甚至可以追溯到欧几里德的时代。具体的说:给定—组实数X1,X2,...,Xn,是否存在不全为零的整数a1,a2,...an,使得:a1 x 1 +a2 x2 + . . . + an xn =0?


这一年BrighamYoung大学的Helaman Ferguson 和Rodney Forcade解决了这一问题。该算法应用于“简化量子场论中的Feynman图的计算”。ok,它并不要你懂,了解即可。:D


◆ ◆ 

十、1987 快速多极算法


[1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.]


1987年:Greengard,和耶鲁大学的Rokhlin发明了快速多极算法。此快速多极算法用来计算“经由引力或静电力相互作用的N 个粒子运动的精确计算——例如银河系中的星体,或者蛋白质中的原子间的相互作用”。

原文发布时间为:2016-07-23

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
存储 算法 数据库
细数各大唯一id生成算法
一、序言几乎所有的业务系统,都有生成一个唯一id的需求,例如: 1.订单号2.活动id3.消息id这个记录标识往往就是数据库中的唯一主键,也可以作为唯一索引。这个记录标识上的查询,往往又有分页或者排序的业务需求,例如: (1)拉取最新的一页的聊天记录:select * by message_id/ order by gmt_create/ limit 100 (2)拉取最近的一百条流水:selec
428 0
细数各大唯一id生成算法
|
算法 前端开发 rax
举轻若重,于无声处听惊雷,那些平平无奇的伟大算法
遥想笔者读大学时在技术讨论时多是储如i+=(++i)+(i++)之类的孔乙己式的问题,而最近我们关注的热点要不是删库跑路坐牢的程序员,要不是员工离职倾向分析系统;而反观国外大神的博客,要不就是这种切入点非常简单,但是最终能够升华至编程之道层面的举轻若重的文章,要不就是秀出那些智商碾压的神仙代码,从这个角度上看我们国内的IT技术氛围还有极大的提升空间。
举轻若重,于无声处听惊雷,那些平平无奇的伟大算法
|
传感器 数据采集 人工智能
细数从Al算法到产品化落地的八大鸿沟
AI产业要真正产生价值,推动社会发展,面临着很多的挑战。从AI算法到产品化落地存在巨大的挑战,可以总结为八大鸿沟。
605 0
细数从Al算法到产品化落地的八大鸿沟
|
机器学习/深度学习 算法 搜索推荐
细数二十世纪最伟大的10大算法
导读:作者July总结了一篇关于计算方法的文章《细数二十世纪最伟大的10大算法》,此文只是本人对算法比较感兴趣,所以也做翻译,学习研究下。以下是文章内容: 发明十大算法的其中几位算法大师 一、1946 蒙特卡洛方法 [1946: John von Neumann, Stan Ulam, and N...
1395 0
|
算法 数据安全/隐私保护
|
1天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
148 80
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
2天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
8天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。

热门文章

最新文章