Leetcode 4 Median of Two Sorted Arrays

简介: 4. Median of Two Sorted Arrays Total Accepted: 99662 Total Submissions: 523759 Difficulty: HardThere are two sorted arrays nums1 and nums2 of size m and n respectively.


4. Median of Two Sorted Arrays


Total Accepted: 99662 Total Submissions: 523759

Difficulty: Hard

There are two sorted arrays nums1 and nums2 of size m and n respectively.Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Example 1:

nums1 = [1, 3]

nums2 = [2]

The median is 2.0

Example 2:

nums1 = [1, 2]

nums2 = [3, 4]

The median is (2 + 3)/2 = 2.5


方案0:合并两个数组为一个数组,排序,取第k个

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2)
    {
        
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int m = nums1.size();
        int n = nums2.size();
        vector<int>   v;   
		v.insert(v.end(),   nums1.begin(),   nums1.end());   
		v.insert(v.end(),   nums2.begin(),   nums2.end()); 
		
        
        
        sort(v.begin(),v.end());
        
        double median=(double) ((n+m)%2? v[(n+m)/2]:(v[(n+m-1)/2]+v[(n+m)/2])/2.0);
        
        
        
        return median;
    }
};




方案1:假设两个数组总共有n个元素,用merge sort的思路排序,排序好的数组取出下标为k-1的元素就是我们需要的答案。
这个方法比较容易想到,但是有没有更好的方法呢?


方案2:可以用一个计数器,记录当前已经找到第m大的元素。同时我们使用两个指针pA和pB,分别指向A和B数组的第一个元素。使用类似于merge sort的原理,如果数组A当前元素小,那么pA++,同时m++。如果数组B当前元素小,那么pB++,同时m++。最终当m等于k的时候,就得到了我们的答案——O(k)时间,O(1)空间。


但是,当k很接近于n的时候,这个方法还是很费时间的。当然,我们可以判断一下,如果k比n/2大的话,我们可以从最大的元素开始找。但是如果我们要找所有元素的中位数呢?时间还是O(n/2)=O(n)的。有没有更好的方案呢?


我们可以考虑从k入手。如果我们每次都能够剔除一个一定在第k大元素之前的元素,那么我们需要进行k次。但是如果每次我们都剔除一半呢?所以用这种类似于二分的思想,我们可以这样考虑:

Assume that the number of elements in A and B are both larger than k/2, and if we compare the k/2-th smallest element in A(i.e. A[k/2-1]) and the k-th smallest element in B(i.e. B[k/2 - 1]), there are three results:
(Becasue k can be odd or even number, so we assume k is even number here for simplicy. The following is also true when k is an odd number.)
A[k/2-1] = B[k/2-1]
A[k/2-1] > B[k/2-1]
A[k/2-1] < B[k/2-1]
if A[k/2-1] < B[k/2-1], that means all the elements from A[0] to A[k/2-1](i.e. the k/2 smallest elements in A) are in the range of k smallest elements in the union of A and B. Or, in the other word, A[k/2 - 1] can never be larger than the k-th smalleset element in the union of A and B.

Why?
We can use a proof by contradiction. Since A[k/2 - 1] is larger than the k-th smallest element in the union of A and B, then we assume it is the (k+1)-th smallest one. Since it is smaller than B[k/2 - 1], then B[k/2 - 1] should be at least the (k+2)-th smallest one. So there are at most (k/2-1) elements smaller than A[k/2-1] in A, and at most (k/2 - 1) elements smaller than A[k/2-1] in B.So the total number is k/2+k/2-2, which, no matter when k is odd or even, is surly smaller than k(since A[k/2-1] is the (k+1)-th smallest element). So A[k/2-1] can never larger than the k-th smallest element in the union of A and B if A[k/2-1]<B[k/2-1];
Since there is such an important conclusion, we can safely drop the first k/2 element in A, which are definitaly smaller than k-th element in the union of A and B. This is also true for the A[k/2-1] > B[k/2-1] condition, which we should drop the elements in B.
When A[k/2-1] = B[k/2-1], then we have found the k-th smallest element, that is the equal element, we can call it m. There are each (k/2-1) numbers smaller than m in A and B, so m must be the k-th smallest number. So we can call a function recursively, when A[k/2-1] < B[k/2-1], we drop the elements in A, else we drop the elements in B.


We should also consider the edge case, that is, when should we stop?
1. When A or B is empty, we return B[k-1]( or A[k-1]), respectively;
2. When k is 1(when A and B are both not empty), we return the smaller one of A[0] and B[0]
3. When A[k/2-1] = B[k/2-1], we should return one of them

In the code, we check if m is larger than n to garentee that the we always know the smaller array, for coding simplicy.


中文翻译:

该方法的核心是将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。

首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。

证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。

当A[k/2-1]>B[k/2-1]时存在类似的结论。

当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:

  • 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
  • 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
  • 如果A[k/2-1]=B[k/2-1],返回其中一个;

// leetcode4.cpp : 定义控制台应用程序的入口点。
//


#include "stdafx.h"

#define min(x,y) (x>y?y:x)
#define max(x,y) (x>y?x:y)

double findKth(int a[],int m,int b[],int n,int k)
{
	if (m>n)
		return findKth(b,n,a,m,k);
	if(m == 0)
		return b[k-1];
	if(k ==1)
		return min(a[0],b[0]);

	//divide k into two parts;
	int pa = min(k/2,m),pb = k - pa;
	if (a[pa -1]<b[pb - 1])
		return findKth(a +pa,m-pa,b,n,k-pa);
	else if(a[pa -1]>a[pb-1])
		return findKth(a,m,b+pb,n-pb,k-pb);
	else
		return a[pa -1];

}

double findMedianSortedArrays(int A[],int m,int B[],int n)
{
	int total = m +n;
	if (total&0x1)
		return findKth(A,m,B,n,total/2+1);
	else
		return (findKth(A,m,B,n,total/2)+findKth(A,m,B,n,total/2+1))/2;
}
int _tmain(int argc, _TCHAR* argv[])
{
	int a[]={1,2,3};
	int b[]={555,666,999};
	int result = findMedianSortedArrays(a,3,b,3);
	return 0;
}




python解决方案:基本上和c++比较类似

def findMedianSortedArrays(self, A, B):
    l = len(A) + len(B)
    if l % 2 == 1:
        return self.kth(A, B, l // 2)
    else:
        return (self.kth(A, B, l // 2) + self.kth(A, B, l // 2 - 1)) / 2.defkth(self, a, b, k):ifnot a:
        return b[k]
    ifnot b:
        return a[k]
    ia, ib = len(a) // 2 , len(b) // 2
    ma, mb = a[ia], b[ib]

    # when k is bigger than the sum of a and b's median indices if ia + ib < k:
        # if a's median is bigger than b's, b's first half doesn't include kif ma > mb:
            return self.kth(a, b[ib + 1:], k - ib - 1)
        else:
            return self.kth(a[ia + 1:], b, k - ia - 1)
    # when k is smaller than the sum of a and b's indiceselse:
        # if a's median is bigger than b's, a's second half doesn't include kif ma > mb:
            return self.kth(a[:ia], b, k)
        else:
            return self.kth(a, b[:ib], k)


参考文献:


http://blog.csdn.net/zxzxy1988/article/details/8587244

http://blog.csdn.net/yutianzuijin/article/details/11499917


网上看到了一张leetcode 的难度和考试频率分析表,转过来给大家看看,出现频率为5的题目还是背诵并默写吧,哈哈!



             

1 Two Sum 2 5 array sort

        set Two Pointers

2 Add Two Numbers 3 4 linked list Two Pointers

          Math

3 Longest Substring Without Repeating Characters 3 2 string Two Pointers

        hashtable  

4 Median of Two Sorted Arrays 5 3 array Binary Search

5 Longest Palindromic Substring 4 2 string  

6 ZigZag Conversion 3 1 string  

7 Reverse Integer 2 3   Math

8 String to Integer (atoi) 2 5 string Math

9 Palindrome Number 2 2   Math

10 Regular Expression Matching 5 3 string Recursion

          DP

11 Container With Most Water 3 2 array Two Pointers

12 Integer to Roman 3 4   Math

13 Roman to Integer 2 4   Math

14 Longest Common Prefix 2 1 string  

15 3Sum 3 5 array Two Pointers

16 3Sum Closest 3 1 array Two Pointers

17 Letter Combinations of a Phone Number 3 3 string DFS

18 4Sum 3 2 array  

19 Remove Nth Node From End of List 2 3 linked list Two Pointers

20 Valid Parentheses 2 5 string Stack

21 Merge Two Sorted Lists 2 5 linked list sort

          Two Pointers

          merge

22 Generate Parentheses 3 4 string DFS

23 Merge k Sorted Lists 3 4 linked list sort

        heap Two Pointers

          merge

24 Swap Nodes in Pairs 2 4 linked list  

25 Reverse Nodes in k-Group 4 2 linked list Recursion

          Two Pointers

26 Remove Duplicates from Sorted Array 1 3 array Two Pointers

27 Remove Element 1 4 array Two Pointers

28 Implement strStr() 4 5 string Two Pointers

          KMP

          rolling hash

29 Divide Two Integers 4 3   Binary Search

          Math

30 Substring with Concatenation of All Words 3 1 string Two Pointers

31 Next Permutation 5 2 array permutation

32 Longest Valid Parentheses 4 1 string DP

33 Search in Rotated Sorted Array 4 3 array Binary Search

34 Search for a Range 4 3 array Binary Search

35 Search Insert Position 2 2 array  

36 Valid Sudoku 2 2 array  

37 Sudoku Solver 4 2 array DFS

38 Count and Say 2 2 string Two Pointers

39 Combination Sum 3 3 array combination

40 Combination Sum II 4 2 array combination

41 First Missing Positive 5 2 array sort

42 Trapping Rain Water 4 2 array Two Pointers

          Stack

43 Multiply Strings 4 3 string Two Pointers

          Math

44 Wildcard Matching 5 3 string Recursion

          DP

          greedy

45 Jump Game II 4 2 array  

46 Permutations 3 4 array permutation

47 Permutations II 4 2 array permutation

48 Rotate Image 4 2 array  

49 Anagrams 3 4 string  

        hashtable  

50 Pow(x, n) 3 5   Binary Search

          Math

51 N-Queens 4 3 array DFS

52 N-Queens II 4 3 array DFS

53 Maximum Subarray 3 3 array DP

54 Spiral Matrix 4 2 array  

55 Jump Game 3 2 array  

56 Merge Intervals 4 5 array sort

        linked list merge

        red-black tree  

57 Insert Interval 4 5 array sort

        linked list merge

        red-black tree  

58 Length of Last Word 1 1 string  

59 Spiral Matrix II 3 2 array  

60 Permutation Sequence 5 1   permutation

          Math

61 Rotate List 3 2 linked list Two Pointers

62 Unique Paths 2 3 array DP

63 Unique Paths II 3 3 array DP

64 Minimum Path Sum 3 3 array DP

65 Valid Number 2 5 string Math

66 Plus One 1 2 array Math

67 Add Binary 2 4 string Two Pointers

          Math

68 Text Justification 4 2 string  

69 Sqrt(x) 4 4   Binary Search

70 Climbing Stairs 2 5   DP

71 Simplify Path 3 1 string Stack

72 Edit Distance 4 3 string DP

73 Set Matrix Zeroes 3 5 array  

74 Search a 2D Matrix 3 3 array Binary Search

75 Sort Colors 4 2 array sort

          Two Pointers

76 Minimum Window Substring 4 2 string Two Pointers

77 Combinations 3 4   combination

78 Subsets 3 4 array Recursion

          combination

79 Word Search 3 4 array DFS

80 Remove Duplicates from Sorted Array II 2 2 array Two Pointers

81 Search in Rotated Sorted Array II 5 3 array Binary Search

82 Remove Duplicates from Sorted List II 3 3 linked list Recursion

          Two Pointers

83 Remove Duplicates from Sorted List 1 3 linked list  

84 Largest Rectangle in Histogram 5 2 array Stack

85 Maximal Rectangle 5 1 array DP

          Stack

86 Partition List 3 3 linked list Two Pointers

87 Scramble String 5 2 string Recursion

          DP

88 Merge Sorted Array 2 5 array Two Pointers

          merge

89 Gray Code 4 2   combination

90 Subsets II 4 2 array Recursion

          combination

91 Decode Ways 3 4 string Recursion

          DP

92 Reverse Linked List II 3 2 linked list Two Pointers

93 Restore IP Addresses 3 3 string DFS

94 Binary Tree Inorder Traversal 4 3 tree Recursion

        hashtable morris

          Stack

95 Unique Binary Search Trees II 4 1 tree DP

          DFS

96 Unique Binary Search Trees 3 1 tree DP

97 Interleaving String 5 2 string Recursion

          DP

98 Validate Binary Search Tree 3 5 tree DFS

99 Recover Binary Search Tree 4 2 tree DFS

100 Same Tree 1 1 tree DFS

101 Symmetric Tree 1 2 tree DFS

102 Binary Tree Level Order Traversal 3 4 tree BFS

103 Binary Tree Zigzag Level Order Traversal 4 3 queue BFS

        tree Stack

104 Maximum Depth of Binary Tree 1 1 tree DFS

105 Construct Binary Tree from Preorder and Inorder Tr 3 3 array DFS

        tree  

106 Construct Binary Tree from Inorder and Postorder T 3 3 array DFS

        tree  

107 Binary Tree Level Order Traversal II 3 1 tree BFS

108 Convert Sorted Array to Binary Search Tree 2 3 tree DFS

109 Convert Sorted List to Binary Search Tree 4 3 linked list Recursion

          Two Pointers

110 Balanced Binary Tree 1 2 tree DFS

111 Minimum Depth of Binary Tree 1 1 tree DFS

112 Path Sum 1 3 tree DFS

113 Path Sum II 2 2 tree DFS

114 Flatten Binary Tree to Linked List 3 3 tree Recursion

          Stack

115 Distinct Subsequences 4 2 string DP

116 Populating Next Right Pointers in Each Node 3 3 tree DFS

117 Populating Next Right Pointers in Each Node II 4 2 tree DFS

118 Pascal's Triangle 2 1 array  

119 Pascal's Triangle II 2 1 array  

120 Triangle 3 1 array DP

121 Best Time to Buy and Sell Stock 2 1 array DP

122 Best Time to Buy and Sell Stock II 3 1 array greedy

123 Best Time to Buy and Sell Stock III 4 1 array DP

124 Binary Tree Maximum Path Sum 4 2 tree DFS

125 Valid Palindrome 2 5 string Two Pointers

126 Word Ladder II 1 1    

127 Word Ladder 3 5 graph BFS

          shortest path

128 Longest Consecutive Sequence 4 3 array  

129 Sum Root to Leaf Numbers 2 4 tree DFS

130 Surrounded Regions 4 3 array BFS

          DFS

131 Palindrome Partitioning 3 4 string DFS

132 Palindrome Partitioning II 4 3 string DP

相关文章
|
存储 缓存 算法
LeetCode刷题---Two Sum(一)
LeetCode刷题---Two Sum(一)
Leetcode 4. Median of Two Sorted Arrays
题目描述很简单,就是找到两个有序数组合并后的中位数,要求时间复杂度O(log (m+n))。 如果不要去时间复杂度,很容易就想到了归并排序,归并排序的时间复杂度是O(m+n),空间复杂度也是O(m+n),不满足题目要求,其实我开始也不知道怎么做,后来看了别人的博客才知道有个二分法求两个有序数组中第k大数的方法。
39 0
Leetcode Find Minimum in Rotated Sorted Array 题解
对一个有序数组翻转, 就是随机取前K个数,移动到数组的后面,然后让你找出最小的那个数,注意,K有可能是0,也就是没有翻转。
49 0
|
存储 C++ Python
LeetCode刷题---Add Two Numbers(一)
LeetCode刷题---Add Two Numbers(一)
|
存储 算法 安全
LeetCode - #2 Add Two Numbers
我们社区从本期开始会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。 不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。
LeetCode - #2 Add Two Numbers
|
存储 算法 安全
LeetCode - #1 Two Sum
我们社区从本期开始会将顾毅(Netflix 增长黑客,《iOS 面试之道》作者,ACE 职业健身教练。)的 Swift 算法题题解整理为文字版以方便大家学习与阅读。 不积跬步,无以至千里;不积小流,无以成江海,Swift社区 伴你前行。
LeetCode - #1 Two Sum
LeetCode 167 Two Sum II - Input array is sorted(输入已排序数组,求其中两个数的和等于给定的数)
给定一个有序数组和一个目标值 找出数组中两个成员,两者之和为目标值,并顺序输出
88 0
|
算法 Python
LeetCode 108. 将有序数组转换为二叉搜索树 Convert Sorted Array to Binary Search Tree
LeetCode 108. 将有序数组转换为二叉搜索树 Convert Sorted Array to Binary Search Tree
|
算法 测试技术
LeetCode 88. 合并两个有序数组 Merge Sorted Array
LeetCode 88. 合并两个有序数组 Merge Sorted Array
|
3月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行