Spark-Yarn架构介绍

简介: 1.简介MapReduct框架从hadoop-0.23版本以后发生了重大的变革, 新的计算框架我们称为MapReudce 2.0 或者 YARN(Yet-Another-Resource-Negotiator)这篇文章主要是简单的介绍YARN的架构, 因为后续我们都会使用YARN提交Spark程序MapReduct 2.

1.简介

MapReduct框架从hadoop-0.23版本以后发生了重大的变革, 新的计算框架我们称为MapReudce 2.0 或者 YARN(Yet-Another-Resource-Negotiator)

这篇文章主要是简单的介绍YARN的架构, 因为后续我们都会使用YARN提交Spark程序

MapReduct 2.0最主要的变革是把资源分配任务调度隔离. 一个全局的资源管理称为ResourceManager (RM), 同时每个应用本身有一个ApplicationMaster (AM). 应用可以是单独的Job也可用是MapReduce job或者是是一个DAG job.

ResourceManager和NodeManager (NM)组成数据处理框架, ResourceManager对所有应用进行资源分配,管理和调度

每个应用程序都有一个ApplicationMaster, ApplicationMaster从ResourceManager分配到资源, 在NodeManager执行和监控任务

2. 架构

  1. 在 YARN 架构中,一个全局 ResourceManager 以主要后台进程的形式运行,它通常在专用机器上运行,在各种竞争的应用程序之间仲裁可用的集群资源。ResourceManager 会追踪集群中有多少可用的活动节点和资源,协调用户提交的哪些应用程序应该在何时获取这些资源。ResourceManager 是惟一拥有此信息的进程,所以它可通过某种共享的、安全的、多租户的方式制定分配(或者调度)决策(例如,依据应用程序优先级、队列容量、ACLs、数据位置等)。
  2. 在用户提交一个应用程序时,一个称为 ApplicationMaster 的轻量型进程实例会启动来协调应用程序内的所有任务的执行。这包括监视任务,重新启动失败的任务,推测性地运行缓慢的任务,以及计算应用程序计数器值的总和。这些职责以前分配给所有作业的单个 JobTracker。ApplicationMaster 和属于它的应用程序的任务,在受 NodeManager 控制的资源容器中运行。
  3. NodeManager 是 TaskTracker 的一种更加普通和高效的版本。没有固定数量的 map 和 reduce slots,NodeManager 拥有许多动态创建的资源容器。容器的大小取决于它所包含的资源量,比如内存、CPU、磁盘和网络 IO。目前,仅支持内存和 CPU (YARN-3)。未来可使用 cgroups 来控制磁盘和网络IO。一个节点上的容器数量,由配置参数与专用于从属后台进程和操作系统的资源以外的节点资源总量(比如总 CPU 数和总内存)共同决定。
  4. ApplicationMaster 可在容器内运行任何类型的任务。例如,MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。您还可以实现一个自定义的 ApplicationMaster 来运行特定的任务,进而发明出一种全新的分布式应用程序框架,改变大数据世界的格局。

在 YARN 中,MapReduce 降级为一个分布式应用程序的一个角色(但仍是一个非常流行且有用的角色),现在称为 MRv2。MRv2 是经典 MapReduce 引擎(现在称为 MRv1)的重现,运行在 YARN 之上。


目录
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
133 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
62 2
|
3月前
|
分布式计算 资源调度 大数据
【决战大数据之巅】:Spark Standalone VS YARN —— 揭秘两大部署模式的恩怨情仇与终极对决!
【8月更文挑战第7天】随着大数据需求的增长,Apache Spark 成为关键框架。本文对比了常见的 Spark Standalone 与 YARN 部署模式。Standalone 作为自带的轻量级集群管理服务,易于设置,适用于小规模或独立部署;而 YARN 作为 Hadoop 的资源管理系统,支持资源的统一管理和调度,更适合大规模生产环境及多框架集成。我们将通过示例代码展示如何在这两种模式下运行 Spark 应用程序。
237 3
|
7天前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
24 3
|
11天前
|
分布式计算 大数据 Apache
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
2024年11月15日13:30北京市朝阳区阿里中心-望京A座-05F,阿里云 EMR 技术团队联合 Apache Paimon 社区举办 Apache Spark & Paimon meetup,助力企业 LakeHouse 架构生产落地”线下 meetup,欢迎报名参加!
74 3
|
1月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
21 1
|
2月前
|
消息中间件 分布式计算 Java
Linux环境下 java程序提交spark任务到Yarn报错
Linux环境下 java程序提交spark任务到Yarn报错
40 5
|
2月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
117 3
YARN(Hadoop操作系统)的架构
|
1月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
38 0
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
37 0
下一篇
无影云桌面