【数值分析】误差的分析与减少及Matlab解线性方程的四种方法

简介: 1、误差的来源      模型误差:数学模型与实际问题之间的误差     观测误差:测量数据与实际数据的误差     方法误差:数学模型的精确解与数值方法得到的数值解之间的误差:例如     舍入误差:对数据进行四舍五入后产生的误差 2、减少误差的几种方法          现在,我们一般用计算机解决计算问题,使用最多的是Matlab软件。

1、误差的来源

  •      模型误差:数学模型与实际问题之间的误差
  •      观测误差:测量数据与实际数据的误差
  •      方法误差:数学模型的精确解与数值方法得到的数值解之间的误差:例如
  •      舍入误差:对数据进行四舍五入后产生的误差

2、减少误差的几种方法

         现在,我们一般用计算机解决计算问题,使用最多的是Matlab软件。对实际问题进行数学建模时,可能存在模型误差,对数学模型进行数值求解时,我们使用的方法可能产生方法误差,我们输入计算机的数据一般是有测量误差的,计算机在运算过程的每一步又会产生舍入误差(十进制转化为二进制时可能产生舍入误差)。由此看来,解决一个问题,基本上会有以上四种四种误差。记得高中物理老师说过,错误是可以避免的,误差是不可避免的,我们只可以减少误差。下面我们就来介绍减少误差的几种方法:
  • 避免两个相近的数相减
                    eg:当x=10003时,计算 的近似值。
                    如果使用6位十进制浮点运算,运算时取6位有效数字,结果如下:
                 
            结果只有一位有效数字,与之前相比,损失了5位有效数字。
                    如果使用下面的方法:
                 
            则结果有6位有效数字,与精确值0.00499912523117984……较为接近。
  •  防止重要的小数被大数吃掉
            eg: 已知 ,求

            如果按照 的顺序来求的话,由于x远大于y,在计算机中可能导致x+y=x的情况,因此我们可以按照 的顺序计算得到正确的结果。
  • 避免除数的绝对值远小于被除数的绝对值
            eg:用消去法解线性方程组
            
                
           这个方程组的正确解为:
             
          当我们用(1)/0.00003-(2)时,可以得到下面的化简和计算结果:
             
            显然上述结果严重失真,产生了很大的误差。这就是由于除数的绝对值远小于被除数的绝对值造成的。
           为了避免上述情况,我们可以用第二个方程消去第一个方程中的x1,即(2)*0.00003-(1),得到如下表达式和结果:
           
            将结果与正确解相比发现,这是一组相当好的近似解。                    
  •  注意算法的稳定性
            所谓算法的稳定性是指,一个算法如果输入数据有误差,而在计算过程中误差不增长,那么称此算法是数值稳定的。
   
  
        上面的部分基本上都来源于《数值分析》一书,讲的挺好的,这些减小误差的方法,我们平时需要多注意,在用c进行编程实现时需要注意,而用Matlab实现时,上面的问题都不是问题了,不过我们要学习的是这种方法和技巧。 下面讲讲,在实现上述方法的Matlab的知识:1、精度控制;2、解线性方程组。

一、精度控制
     format  digits  vpa函数的使用
     format只用来控制显示精度的,并不控制计算精度,digits用来控制计算精度,vpa也是控制计算精度。
     digits必须与vpa配合使用,单独不起作用。
     vpa可单独控制计算精度
     
     具体操作如下图:
            1、format的操作
                

            2、digits的操作
               
            3、vpa的操作
               

     二、 解非齐次线性方程组
           

             可以通过以下四种方法求解该方程组:
              用矩阵表示上述的线性方程组如下:

  • 求逆矩阵法
            

  • 矩阵左除法
                   
  • 初等行变换
                     
  • 卡莱姆法则
                       
具体的程序实现如下:
clear all
clc
 
A=[ 6 2 3 4 5
    2 -3 7 10 13
    3 5 11 -16 21
    2 -7 7 7 2
    7 3 -5 3 10]
b=[80 59 90 22 85]'
 
x1=inv(A)*b%逆矩阵法
x2=A\b%矩阵左除法
x3=rref([A b])%初等行变换
 
%克拉姆法则
for i=1:length(A)
    B=A;
    B(:,i)=b;
    x(i)=det(B)/det(A);
end
x'

运行结果如下图:

注意事项:当系数矩阵A不是方阵,或A的行列式为0时,逆矩阵法和克拉姆法则无法使用,而初等行变换能适用于各种线性方程组的求解。

目录
相关文章
|
1天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
5天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
空心电抗器的matlab建模与性能仿真分析
空心电抗器是一种无铁芯的电感元件,通过多层并联导线绕制而成。其主要作用是限制电流、滤波、吸收谐波和提高功率因数。电抗器的损耗包括涡流损耗、电阻损耗和环流损耗。涡流损耗由交变磁场引起,电阻损耗与电抗器半径有关,环流损耗与各层电流相关。系统仿真使用MATLAB2022a进行。
|
13天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
56 5
|
1月前
|
算法 数据安全/隐私保护
数字通信中不同信道类型对通信系统性能影响matlab仿真分析,对比AWGN,BEC,BSC以及多径信道
本项目展示了数字通信系统中几种典型信道模型(AWGN、BEC、BSC及多径信道)的算法实现与分析。使用Matlab2022a开发,提供无水印运行效果预览图、部分核心代码及完整版带中文注释的源码和操作视频。通过数学公式深入解析各信道特性及其对系统性能的影响。
|
3月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
64 0
|
4月前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
240 19
|
4月前
|
算法 数据挖掘 vr&ar
基于ESTAR指数平滑转换自回归模型的CPI数据统计分析matlab仿真
该程序基于ESTAR指数平滑转换自回归模型,对CPI数据进行统计分析与MATLAB仿真,主要利用M-ESTAR模型计算WNL值、P值、Q值及12阶ARCH值。ESTAR模型结合指数平滑与状态转换自回归,适用于处理经济数据中的非线性趋势变化。在MATLAB 2022a版本中运行并通过ADF检验验证模型的平稳性,适用于复杂的高阶自回归模型。
|
5月前
|
算法
蜂窝网络下行链路的覆盖率和速率性能matlab仿真分析
此程序在MATLAB2022a环境下运行,基于随机几何模型评估蜂窝网络的下行链路覆盖率和速率性能。通过模拟不同场景下的基站(BS)配置与噪声情况,计算并绘制了各种条件下的信号干扰加噪声比(SINR)阈值与覆盖率概率的关系图。结果显示,在考虑噪声和不同基站分布模型时,覆盖率有显著差异,提出的随机模型相较于传统网格模型更为保守但也更加贴合实际基站的分布情况。
|
5月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
102 0