蜂窝网络下行链路的覆盖率和速率性能matlab仿真分析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 此程序在MATLAB2022a环境下运行,基于随机几何模型评估蜂窝网络的下行链路覆盖率和速率性能。通过模拟不同场景下的基站(BS)配置与噪声情况,计算并绘制了各种条件下的信号干扰加噪声比(SINR)阈值与覆盖率概率的关系图。结果显示,在考虑噪声和不同基站分布模型时,覆盖率有显著差异,提出的随机模型相较于传统网格模型更为保守但也更加贴合实际基站的分布情况。

1.程序功能描述
参考如下文献对蜂窝网络下行链路的覆盖率和速率性能进行数值仿真。

6ba675581a52fda6c9c2cb7789280a21_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    蜂窝网络通常通过将基站放置在网格上来建模,移动用户要么随机分布,要么确定放置。这些模型已被广泛使用,但存在高度理想化和不易处理的问题,因此使用复杂的系统级模拟来评估覆盖率/停机概率和速率。长期以来,人们一直希望采用更易于操作的模型。我们使用随机几何为多小区信号干扰加噪声比(SINR)开发了新的通用模型。在非常一般的假设下,下行链路SINR-CCDF的搜索表达式(相当于覆盖概率)涉及可快速计算的积分,并且在一些实际的特殊情况下,可以简化为公共积分(例如,Q函数),甚至简化为简单的闭式表达式。我们还从静态频率重用中导出平均速率,然后导出覆盖增益(和平均速率损耗)。我们将我们的覆盖率预测与网格模型和实际基站部署进行了比较,并观察到所提出的模型是悲观的(覆盖率的下限),而网格模型是乐观的,两者的准确度大致相同。除了更易于处理之外,所提出的模型还可以更好地捕捉基站在未来网络中日益机会主义和密集的位置。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
2.jpeg
3.jpeg
4.jpeg
5.jpeg

3.核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')


%%
SINR    = [-11:1:20];
beta1  = 10.^(SINR/10);
alpha  = 4;


%without noise 
Pc1    = zeros(size(SINR));

for i = 1:length(SINR)
    i
    f      = func_Pc_cal1(beta1(i));
    Pc1(i) = f;
end
figure;
plot(SINR,Pc1,'m>','linewidth',2);
hold on


%with noise 
SNR    = 10;
Pc2    = zeros(size(SINR));
for i = 1:length(SINR)
    i
    f      = func_Pc_cal2(beta1(i),SNR);
    Pc2(i) = f;
end
plot(SINR,Pc2,'c','linewidth',2);
hold on



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
Pc3    = zeros(size(SINR));

for i = 1:length(SINR)
    i
    f      = func_Pc_cal3(beta1(i));
    Pc3(i) = f;
end
plot(SINR,Pc3,'ro','linewidth',2);
hold on



SNR    = 10;
Pc4    = zeros(size(SINR));
for i = 1:length(SINR)
    i
    f      = func_Pc_cal4(beta1(i),SNR);
    Pc4(i) = f;
end
plot(SINR,Pc4,'b','linewidth',2);
hold on
axis([-9.1,20,0,1]);

SNR    = 10;
Pc5    = zeros(size(SINR));
for i = 1:length(SINR)
    i
    f      = func_Pc_cal5(beta1(i),SNR);
    Pc5(i) = f;
end
plot(SINR,Pc5,'k--','linewidth',2);
hold on
axis([-9.1,20,0,1]);


legend('PPP BSs No Noise','PPP BSs SNR = 10','Grid N = 24 No Noise','Grid N = 8 SNR=10','Grid N = 24 SNR=10');
xlabel('SINR threshold(Db)');
ylabel('Probability of Coverage');

4.本算法原理
蜂窝网络下行链路的覆盖率和速率性能是移动通信网络中的重要指标,对于网络规划和优化具有重要意义。

一、蜂窝网络下行链路模型

   蜂窝网络下行链路是指从基站到用户设备的通信链路。在蜂窝网络中,基站负责向用户设备发送信号,用户设备接收信号并进行处理。下行链路的性能受到多种因素的影响,包括基站发射功率、信道衰落、干扰等。

二、覆盖率性能

   覆盖率是指网络中用户设备能够成功接收到基站信号的概率。覆盖率性能是衡量网络服务质量的重要指标之一。在蜂窝网络中,覆盖率性能受到多种因素的影响,包括基站发射功率、信道衰落、干扰等。

基站发射功率
基站发射功率是影响覆盖率性能的重要因素之一。发射功率越大,覆盖范围越广,但是也会增加干扰和能耗。发射功率需要根据网络需求和覆盖范围进行合理设置。

信道衰落
信道衰落是指信号在传播过程中受到的衰减和失真。信道衰落会导致信号质量下降,从而影响覆盖率性能。信道衰落可以通过多种方法进行补偿和抑制,例如采用分集技术、功率控制等。

干扰
干扰是指来自其他信号源的干扰信号对有用信号的干扰。在蜂窝网络中,干扰主要来自于其他基站的同频干扰和其他用户设备的干扰。干扰会导致信号质量下降,从而影响覆盖率性能。干扰可以通过多种方法进行抑制和消除,例如采用频率复用、功率控制等。

三、速率性能

   速率性能是指网络中用户设备能够成功接收到的数据传输速率。速率性能是衡量网络服务质量的重要指标之一。在蜂窝网络中,速率性能受到多种因素的影响,包括信道带宽、信噪比、调制方式等。

信道带宽
信道带宽是指信道能够传输的信号的频率范围。信道带宽越宽,传输速率越高,但是也会增加信号处理的复杂度和能耗。信道带宽需要根据网络需求和传输速率进行合理设置。

信噪比
信噪比是指接收到的有用信号与干扰信号之间的比值。信噪比越高,传输速率越高,但是也会增加信号处理的复杂度和能耗。信噪比可以通过多种方法进行提高,例如采用功率控制、降噪技术等。

相关文章
|
11天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
7天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
5天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
6天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
23 3
|
11天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
9天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
27 0