工业视觉与计算机视觉的区别 一篇就够

简介:

机器视觉是指利用相机、摄像机等传感器,配合机器视觉算法赋予智能设备人眼的功能,从而进行物体的识别、检测、测量等功能。按照应用的领域与细分技术的特点,机器视觉进一步可以分为工业视觉、计算机视觉两类,相应地,其应用领域可以划分为智能制造和智能生活两类。

机器视觉与计算机视觉.jpg

因为工业视觉和计算机视觉在功能目标、硬件需求、算法侧重、产业成熟度上有一定差异。在功能目标上,工业视觉主要解决以往需要人眼进行的工件的定位、测量、检测等重复性劳动;

计算机视觉的主要任务是赋予智能机器人视觉,利用测距、物体标定与识别等功能实现对于外界位置信息、图像信息等的识别与判断。在硬件需求上,工业视觉相对较高,需要对工业相机的帧频、分辨率等指标依据自身的需求进行筛选;而计算机视觉则除少部分特殊情况外,大部分对于相机或摄像头的要求并不高。

在算法侧重上,工业视觉的算法往往侧重于精确度的提高;而计算机视觉的算法难度相对较高,侧重于或采用数学逻辑或采用深度学习方法进行物体的标定与识别。在产业成熟度上,工业视觉已经相对较为成熟,在半导体、包装等行业的测量检测已有较为广泛的应用;而计算机视觉整体来讲还是一个刚起步的状态,初创企业层出不穷。

机器视觉作为人工智能领域的重要分支,已经协同其他技术开始对社会产生重大影响。虽然人工智能领域内的各个前沿技术存在着不同程度的交叉,难以细分,但依据主要采用的技术类别,可以将人工智能行业分为:深度学习、机器视觉、自然语言处理、语音识别、情境感知计算、模式识别等等。其中,深度学习、机器视觉、自然语言处理是优质企业参与最多的三大领域,也是人们在人工智能领域付诸探索实践最多、获得应用成果最为丰厚的主要领域。

深度学习、机器视觉、自然语言处理这三大方向是计算机智能化发展的三大功能,分别代表着教会机器思考、教会机器观察外界、教会机器理解文字。朗锐智科(www.lrist.com)认为,机器视觉作为一种基础功能性技术,是机器人自主行动的前提,能够实现计算机系统对于外界环境的观察、识别以及判断等功能,相当于赋予了机器人视觉,对于人工智能的发展具有极其重要的作用。

相关文章
|
4月前
|
机器学习/深度学习 人工智能 监控
探索视觉AI:超越计算机视觉的边界
【8月更文挑战第20天】
68 2
|
6月前
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
156 8
|
7月前
|
机器学习/深度学习 算法 数据挖掘
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
733 1
|
5月前
|
机器学习/深度学习 人工智能 固态存储
深度学习在计算机视觉中的应用:重塑视觉感知的未来
【7月更文挑战第1天】深度学习重塑计算机视觉未来:本文探讨了深度学习如何革新CV领域,核心涉及CNN、RNN和自注意力机制。应用包括目标检测(YOLO、SSD等)、图像分类(VGG、ResNet等)、人脸识别及医学影像分析。未来趋势包括多模态融合、语义理解、强化学习和模型可解释性,推动CV向更高智能和可靠性发展。
|
7月前
|
编解码 边缘计算 自然语言处理
2024年5月计算机视觉论文推荐:包括扩散模型、视觉语言模型、图像编辑和生成、视频处理和生成以及图像识别等各个主题
五月发布的计算机视觉领域重要论文涵盖了扩散模型、视觉语言模型、图像生成与编辑及目标检测。亮点包括:1) Dual3D提出双模式推理策略,实现高效文本到3D图像生成;2) CAT3D利用多视图扩散模型创建3D场景,仅需少量图像;3) Hunyuan-DiT是多分辨率的中文理解扩散Transformer,可用于多模态对话和图像生成;4) 通过潜在扩散模型从EEG数据重建自然主义音乐,展示复杂音频重建潜力。此外,还有关于视觉语言模型和图像编辑的创新工作,如BlobGEN用于合成具有控制性的图像。
276 3
|
6月前
|
机器学习/深度学习 算法 计算机视觉
计算机视觉是一门研究如何使计算机“看”的技术,其目标是让计算机能够像人类视觉一样理解和解释视觉信息。
计算机视觉是一门研究如何使计算机“看”的技术,其目标是让计算机能够像人类视觉一样理解和解释视觉信息。
|
6月前
|
传感器 监控 自动驾驶
计算机视觉(Computer Vision,CV)是一门研究如何使机器“看”并理解视觉世界的科学与技术。
计算机视觉(Computer Vision,CV)是一门研究如何使机器“看”并理解视觉世界的科学与技术。
|
机器学习/深度学习 开发框架 决策智能
计算机视觉实战 (一) 开个视觉实战专栏
计算机视觉实战 (一) 开个视觉实战专栏
272 0
|
机器学习/深度学习 测试技术 计算机视觉
【计算机视觉 | ViT-G】谷歌大脑提出 ViT-G:缩放视觉 Transformer,高达 90.45% 准确率
谷歌大脑提出 ViT-G:缩放视觉 Transformer,高达 90.45% 准确率
|
机器学习/深度学习 算法 数据挖掘
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
计算机视觉五大核心研究任务全解:分类识别、检测分割、人体分析、三维视觉、视频分析
417 0

热门文章

最新文章