探索MATLAB在计算机视觉与深度学习领域的实战应用

简介: 探索MATLAB在计算机视觉与深度学习领域的实战应用

随着人工智能技术的快速发展,计算机视觉与深度学习已成为科技领域中最热门、最具挑战性的研究方向之一。

它们的应用范围从简单的图像处理扩展到了自动驾驶、医疗影像分析、智能监控行业等多个领域。

在这样的背景下,《MATLAB计算机视觉与深度学习实战》一书应运而生,为广大从业人员和学者提供了一个全面、深入的学习和实践平台。

书籍亮点

  • 实战案例驱动
    本书详细讲解了29个实用的MATLAB计算机视觉与深度学习案例,包括图像去雾、答题卡识别、人脸二维码编解码系统等,每个案例都含有可运行的程序,让读者能够通过实践深入理解理论知识。
  • 全面涵盖基础与进阶
    从数字图像处理的基础知识到深度学习的高级应用,书中内容丰富,既有基础的图像处理技术,也有高级的视觉分析技术,满足了不同层次读者的需求。
  • 专家级作者团队
    由机器学习算法专家、3D视觉分析专家和模型设计与分析高手共同撰写,作者团队从事该领域多年,拥有丰富的实战经验和深厚的理论基础。
  • 丰富的教学资源
    书籍附带了配套的代码、运行视频、课件和教案等资源,旨在帮助读者更好地理解书中的案例和概念,提高学习效率。

针对读者

无论你是计算机、通信和自动化等相关专业的学生、教师,还是计算机视觉工程师,都会发现这本书是一个宝贵的资源。对于初学者而言,书中的案例可以帮助你快速入门;对于有经验的开发者来说,这些案例则能够提供新的视角和方法,帮助解决实际工作中的问题。


为什么选择MATLAB?

MATLAB作为一款应用于科学计算和工程仿真的交互式编程软件,以其强大的图像处理和深度学习工具箱,成为实现这些案例的理想选择。书中不仅介绍了如何使用MATLAB进行计算机视觉与深度学习的应用,还涉及到了如何使用DeepLearning Toolbox、TensorFlow、Keras和Java等工具进行高效编程。

编辑推荐

在这个信息化和数字化时代,计算机视觉与深度学习的技能需求日益增加。《MATLAB计算机视觉与深度学习实战》不仅提供了丰富的学习材料,而且通过实战案例,让读者能够深刻理解并应用这些先进的技术。本书是一个理想的学习工具和参考资料,无论你是刚刚开始探索这一领域,还是希望深化已有知识,都将从中获益良多。

走进计算机视觉和深度学习的世界,让《MATLAB计算机视觉与深度学习实战》成为你的导师和伙伴,共同探索这一激动人心的领域。立即获取你的副本,开始你的学习之旅吧!

![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/direct/cc34a6ea7f2344348321076178628c46.png


相关文章
|
1月前
|
传感器 机器学习/深度学习 运维
一种欠定盲源分离方法及其在模态识别中的应用(Matlab代码实现)
一种欠定盲源分离方法及其在模态识别中的应用(Matlab代码实现)
|
12天前
|
机器学习/深度学习 算法 5G
【提高晶格缩减(LR)辅助预编码中VP的性能】向量扰动(VP)预编码在下行链路中多用户通信系统中的应用(Matlab代码实现)
【提高晶格缩减(LR)辅助预编码中VP的性能】向量扰动(VP)预编码在下行链路中多用户通信系统中的应用(Matlab代码实现)
|
20天前
|
机器学习/深度学习 数据采集 编解码
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
基于深度学习分类的时相关MIMO信道的递归CSI量化(Matlab代码实现)
|
27天前
|
机器学习/深度学习 数据采集 边缘计算
相关向量机和特征选取技术在短期负荷预测中的应用(Matlab代码实现)
相关向量机和特征选取技术在短期负荷预测中的应用(Matlab代码实现)
|
1月前
|
机器学习/深度学习 人工智能 算法
【语音处理】一种增强的隐写及其在IP语音隐写中的应用(Matlab代码实现)
【语音处理】一种增强的隐写及其在IP语音隐写中的应用(Matlab代码实现)
|
11天前
|
机器学习/深度学习 算法 Windows
基于ADMM应用于水蜜桃采摘配送联合优化问题研究(Matlab代码实现)
基于ADMM应用于水蜜桃采摘配送联合优化问题研究(Matlab代码实现)
|
1月前
|
5G Python
选择合并应用于差分放大转发中继在瑞利衰落信道上的通信系统研究(Matlab代码实现)
选择合并应用于差分放大转发中继在瑞利衰落信道上的通信系统研究(Matlab代码实现)
|
12天前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 数据库
基于GoogleNet深度学习网络和GEI步态能量提取的步态识别算法matlab仿真,数据库采用CASIA库
本项目基于GoogleNet深度学习网络与GEI步态能量图提取技术,实现高精度步态识别。采用CASI库训练模型,结合Inception模块多尺度特征提取与GEI图像能量整合,提升识别稳定性与准确率,适用于智能安防、身份验证等领域。
|
5月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
656 64
计算机视觉五大技术——深度学习在图像处理中的应用

热门文章

最新文章