探索MATLAB在计算机视觉与深度学习领域的实战应用

简介: 探索MATLAB在计算机视觉与深度学习领域的实战应用

随着人工智能技术的快速发展,计算机视觉与深度学习已成为科技领域中最热门、最具挑战性的研究方向之一。

它们的应用范围从简单的图像处理扩展到了自动驾驶、医疗影像分析、智能监控行业等多个领域。

在这样的背景下,《MATLAB计算机视觉与深度学习实战》一书应运而生,为广大从业人员和学者提供了一个全面、深入的学习和实践平台。

书籍亮点

  • 实战案例驱动
    本书详细讲解了29个实用的MATLAB计算机视觉与深度学习案例,包括图像去雾、答题卡识别、人脸二维码编解码系统等,每个案例都含有可运行的程序,让读者能够通过实践深入理解理论知识。
  • 全面涵盖基础与进阶
    从数字图像处理的基础知识到深度学习的高级应用,书中内容丰富,既有基础的图像处理技术,也有高级的视觉分析技术,满足了不同层次读者的需求。
  • 专家级作者团队
    由机器学习算法专家、3D视觉分析专家和模型设计与分析高手共同撰写,作者团队从事该领域多年,拥有丰富的实战经验和深厚的理论基础。
  • 丰富的教学资源
    书籍附带了配套的代码、运行视频、课件和教案等资源,旨在帮助读者更好地理解书中的案例和概念,提高学习效率。

针对读者

无论你是计算机、通信和自动化等相关专业的学生、教师,还是计算机视觉工程师,都会发现这本书是一个宝贵的资源。对于初学者而言,书中的案例可以帮助你快速入门;对于有经验的开发者来说,这些案例则能够提供新的视角和方法,帮助解决实际工作中的问题。


为什么选择MATLAB?

MATLAB作为一款应用于科学计算和工程仿真的交互式编程软件,以其强大的图像处理和深度学习工具箱,成为实现这些案例的理想选择。书中不仅介绍了如何使用MATLAB进行计算机视觉与深度学习的应用,还涉及到了如何使用DeepLearning Toolbox、TensorFlow、Keras和Java等工具进行高效编程。

编辑推荐

在这个信息化和数字化时代,计算机视觉与深度学习的技能需求日益增加。《MATLAB计算机视觉与深度学习实战》不仅提供了丰富的学习材料,而且通过实战案例,让读者能够深刻理解并应用这些先进的技术。本书是一个理想的学习工具和参考资料,无论你是刚刚开始探索这一领域,还是希望深化已有知识,都将从中获益良多。

走进计算机视觉和深度学习的世界,让《MATLAB计算机视觉与深度学习实战》成为你的导师和伙伴,共同探索这一激动人心的领域。立即获取你的副本,开始你的学习之旅吧!

![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/direct/cc34a6ea7f2344348321076178628c46.png


相关文章
|
8月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
306 22
|
5月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
545 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
6月前
|
机器学习/深度学习 自然语言处理 算法
PyTorch PINN实战:用深度学习求解微分方程
物理信息神经网络(PINN)是一种将深度学习与物理定律结合的创新方法,特别适用于微分方程求解。传统神经网络依赖大规模标记数据,而PINN通过将微分方程约束嵌入损失函数,显著提高数据效率。它能在流体动力学、量子力学等领域实现高效建模,弥补了传统数值方法在高维复杂问题上的不足。尽管计算成本较高且对超参数敏感,PINN仍展现出强大的泛化能力和鲁棒性,为科学计算提供了新路径。文章详细介绍了PINN的工作原理、技术优势及局限性,并通过Python代码演示了其在微分方程求解中的应用,验证了其与解析解的高度一致性。
742 5
PyTorch PINN实战:用深度学习求解微分方程
|
6月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
7月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
201 40
|
6月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
5月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
|
7月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
274 6
|
7月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
8月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
241 18

热门文章

最新文章