《DeepSeek训练算法:开启高效学习的新大门》

简介: DeepSeek是大语言模型中的佼佼者,以其独特的训练算法和高效学习能力备受关注。它基于Transformer架构进行深度创新,优化注意力机制,采用多头部注意力捕捉复杂语义。引入混合专家(MoE)模型,动态分配任务给最合适的专家模块,减少计算量并提升灵活性。创新应用FP8低精度训练技术,通过细粒度量化、提升累加精度等手段保证计算准确性。优化的训练流程包括海量优质数据、预训练与微调结合、强化学习与人类反馈机制,确保模型在多种任务中表现优异。高效的并行策略如数据并行、流水线并行和张量切片模型并行,进一步加快训练速度。这些技术融合使DeepSeek在性能上表现出色,为大语言模型发展提供了新思路。

在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。

一、独特的架构基础

DeepSeek以Transformer架构为基石 ,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数据时,能关注到不同位置的信息,从而更好地捕捉语义依赖。DeepSeek在此基础上,对注意力机制进行优化,比如采用多头部注意力机制,使模型可以从不同角度捕捉数据特征,就像拥有多个不同视角的观察者,共同对数据进行分析,极大提升了模型对复杂语言结构和语义的理解能力。

二、混合专家(MoE)模型

DeepSeek引入混合专家模型,这是其训练算法的一大亮点。在MoE模型中,一个Transformer层包含多个专家模块 ,就像一个由各领域专家组成的智囊团。在处理任务时,模型会根据输入数据的特点,动态分配任务给最合适的专家,激活部分参数进行计算。例如在DeepSeek-V3中,每个Transformer层有256个专家和1个共享专家,总共6710亿参数,但每次token仅激活8个专家(370亿参数)。这种方式不仅有效减少了计算量,降低训练成本,还提升了模型的灵活性和泛化能力,让模型在面对不同类型的语言任务时,都能找到最佳的处理方式 。

三、低精度训练技术之FP8的创新应用

DeepSeek在训练中创新性地使用了FP8(8位浮点)技术,这在大规模语言模型训练中具有开创性。

  • 细粒度量化策略:为解决FP8动态范围有限导致的溢出和下溢问题,DeepSeek将激活值按1x128 tile分组并缩放(每个token对应128个通道),权重按128x128 block分组并缩放 。相比传统的张量级量化,这种细粒度处理方式能更好地应对异常值,提高量化精度。

  • 提升累加精度:在通用矩阵乘法(GEMM)中,DeepSeek将部分结果定期提升到FP32寄存器进行累加,有效减少了因低比特宽度累加在张量核心中产生的误差,保证了计算的准确性。

  • 统一的E4M3格式:摒弃以往前向传播用E4M3、反向传播用E5M2的混合格式,DeepSeek统一采用E4M3格式。通过细粒度量化,实现元素间指数位共享,简化训练框架,提升训练效果。

  • 在线量化:训练时,DeepSeek动态计算每个1x128激活tile或128x128权重block的缩放因子,无需依赖历史最大值的延迟量化方法,简化了框架,还提高了模型精度 。

四、优化的训练流程

  1. 海量优质数据:DeepSeek在训练前,会收集海量、多样且高质量的语料数据,涵盖多种领域和语言,像新闻资讯、学术论文、文学作品等,为模型学习丰富的语言表达和知识体系提供了充足的养分。

  2. 预训练与微调结合:先在大规模通用语料上进行预训练,让模型学习到通用的语言知识和语义理解能力。然后,针对特定任务或领域,使用相关数据进行微调,使模型在保持通用性的同时,提升在特定场景下的表现。例如在代码生成任务中,使用大量代码数据对模型进行微调,让它能更好地理解和生成代码。

  3. 强化学习与人类反馈:利用强化学习从人类反馈(RLHF)机制,根据人类对模型输出的评估和反馈,进一步优化模型。比如,模型生成文本后,人类评估其准确性、相关性和逻辑性,反馈给模型,模型通过强化学习调整参数,使生成结果更符合人类期望 。

五、高效的训练并行策略

为了充分利用计算资源,加快训练速度,DeepSeek采用了多种并行训练策略 。

  • 数据并行:将训练数据分割成多个部分,分配到不同的计算节点上并行处理。每个节点计算自己部分数据的梯度,然后进行同步更新,减少了单节点的计算负担,提高训练效率。

  • 流水线并行:把模型的不同层分配到不同节点,各节点像流水线一样依次处理数据,在时间上重叠计算,提高了计算资源的利用率,加快了整体训练速度。

  • 张量切片模型并行:将模型中的张量按维度切片,分布到不同节点上进行计算,适用于处理大规模模型,避免单个节点内存不足的问题 。

DeepSeek的训练算法通过独特的架构设计、创新的技术应用、优化的训练流程和高效的并行策略,为模型的高效学习提供了坚实保障。这些技术的融合,不仅让DeepSeek在性能上表现出色,也为大语言模型的发展提供了新的思路和方向,相信在未来,DeepSeek还会不断进化,在人工智能领域创造更多可能 。

相关文章
SCEdit:轻量级高效可控的AI图像生成微调框架(附魔搭社区训练实践教程)
SCEdit是一个高效的生成式微调框架,由阿里巴巴通义实验室基础视觉智能团队所提出。
极智AI | 谈谈为什么量化能加速推理
本文主要讨论一下为什么量化能加速模型推理。
554 0
让RAG更聪明,ViDoRAG开启视觉文档检索增强生成新范式,上阿里云百炼可直接体验
视觉丰富文档的高效检索与生成是自然语言处理领域的重大挑战。ViDoRAG(Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents)由阿里巴巴通义实验室、中国科学技术大学和上海交通大学联合提出,通过多智能体框架和动态迭代推理机制解决此问题。其核心包括多模态混合检索策略和多智能体生成流程,同时发布的ViDoSeek数据集,专为大规模文档集合设计,提供复杂推理与精准问答的评估基准。实验表明,ViDoRAG在准确率和效率上优于传统方法,未来将优化系统性能并降低计算成本。
DeepSeek-V3 高效训练关键技术分析
本文从模型架构、并行策略、通信优化和显存优化四个方面展开,深入分析了DeepSeek-V3高效训练的关键技术,探讨其如何以仅5%的算力实现对标GPT-4o的性能。
640 146
TPO:告别微调!这个AI框架让大模型实时进化:无需训练直接优化,输入问题越用越聪明,输出质量暴涨50%
TPO(Test-Time Prompt Optimization)框架,通过奖励模型和迭代反馈优化大语言模型输出,无需训练即可显著提升性能,支持动态对齐人类偏好,降低优化成本。
218 8
TPO:告别微调!这个AI框架让大模型实时进化:无需训练直接优化,输入问题越用越聪明,输出质量暴涨50%
DeepSeek 开源 R1 系列推理模型,性能对标 OpenAI o1,基于纯强化学习完成自我进化,无需监督微调
DeepSeek R1-Zero 是一款基于纯强化学习的开源推理模型,无需监督微调数据,支持多任务泛化与自我进化,适用于数学推理、代码生成等场景。
592 21
DeepSeek 开源 R1 系列推理模型,性能对标 OpenAI o1,基于纯强化学习完成自我进化,无需监督微调
超越工具:DeepSeek 如何重塑你的工作方式
在这个信息爆炸的时代,DeepSeek 作为新一代人工智能助手,不仅提升具体任务执行效率,更通过智能化重构工作流程、优化决策机制和推动认知升级,实现个人生产力的革命性进步。它在项目管理、文档处理、数据分析等方面展现出卓越能力,自动处理重复任务,定制个性化解决方案,优化团队协作,重新定义工作效率与质量。拥抱 DeepSeek,开启全新的工作方式。
DeepSeek 开源周第二弹!DeepEP:专为 MoE 训练和推理设计的并行通信库
DeepEP 是 DeepSeek 开源的首个专为混合专家模型(MoE)训练和推理设计的通信库,支持高吞吐量、低延迟通信,优化 NVLink 和 RDMA 网络性能。
110 3
《探秘DeepSeek优化器:解锁模型训练的高效密码》
DeepSeek作为备受瞩目的大语言模型,在自然语言处理任务中表现出色,其优化器功不可没。该优化器具备自适应学习率调节机制,能灵活应对训练动态,确保快速收敛与稳定;采用高效梯度处理技术,防止梯度爆炸或消失,支持稀疏梯度更新,减少计算开销;完美适配分布式训练环境,降低通信开销,加速多节点协同工作;并与模型架构深度适配,充分发挥潜力。这些特点共同推动DeepSeek在复杂任务中取得优异表现。
LIMO:上海交大推出高效推理方法,仅需817条训练样本就能激活大语言模型的复杂推理能力
LIMO 是由上海交通大学推出的一种高效推理方法,通过极少量的高质量训练样本激活大语言模型的复杂推理能力。
187 11
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等