极智AI | 谈谈为什么量化能加速推理

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 本文主要讨论一下为什么量化能加速模型推理。

本文主要讨论一下为什么量化能加速模型推理。

前面已经写过几篇关于模型量化相关的文章:《【模型推理】谈谈几种量化策略:MinMax、KLD、ADMM、EQ》、《【模型推理】谈谈模型量化组织方式》、《【模型推理】谈谈非线性激活函数的量化方式》,要了解相关知识可以查阅,这里主要讨论一下为什么量化能加速模型推理。

量化经常会涉及到 Quantize 和 Dequantize 的过程,其实对于不量化的 flow,量化是会增加操作子的,所以对于量化能加速的原因,可能并没有想象的那么简单。这里以 Conv 层来进行说明量化与不量化的速度区别。

假设输入通道为 C1,输出为 C2HW,卷积核的大小为 K,下述为各个不同类型运算指令的时钟周期:

假设未量化的 Conv 算子使用 fp16 精度进行推理,其耗时如下:

先抛开 Quantize 层和 Dequantize 层不看,单独计算量化为 int8 卷积后的耗时,需要注意的是,为了保证运算不溢出,不能够总是使用 int8 来进行卷积运算,中间计算结果有时需要使用 int16 甚至是 int32 数据类型来保存。下述 n1 表示做多少次 int8 乘加才不会溢出 int16 类型,n2 表示做多少次 int16 乘加才不会溢出 int32 类型:

可以看到当进行 2 次 int8 乘加,就需要把原中间结果保存在 int16 寄存器中的数据累加到 int32 寄存器上;进行 n2 次 int16 加,就需要把本来中间结果保存在 int32 寄存器中的数据累加到 int64 寄存器上。因此,可以得到以下量化卷积后的时间:

上述卷积还未添加 Requantize 操作,其运算操作耗时如下:

最终量化后的卷积操作耗时如下:

整型运算的算力往往要比浮点运算的算力高一倍,指令周期方面整形运算的周期是浮点运算的四分之一。单纯从上述的量化前后的卷积周期耗时来看,确实是会有速度上的提升。

然后我们来考虑加入 Quantize 层和 Dequantize 层,需要引入如下的指令时钟周期:

我们可以很容易得到加入 Quantize 层和 Dequantize 后的总体耗时,如下:

从上述公式,可知加入量化和反量化后,需要涉及到其他众多指令的时钟周期,这样是无法直接判断是否会比未量化的卷积更加快,这个问题需要结合不同的推理部署环境来看。

其实对于部署量化模型,大多数情况之所以可以加速,不止是因为浮点变整型运算指令周期缩短的原因,在很多专门为神经网络部署设计的芯片上,往往会存在专门为整型运算设计的加速单元。此外,有些硬件是不存在浮点运算单元的,这个时候可以使用量化模型进行部署。


以上从指令周期缩短的角度分析了一下量化提速的原因,量化提速是一个系统工程,需考虑的因素较多。


logo_show.gif


相关文章
|
3月前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
340 73
|
1月前
|
人工智能 运维 Serverless
Serverless GPU:助力 AI 推理加速
近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。
|
26天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
2月前
|
人工智能 NoSQL 机器人
MongoDB Atlas与YoMio.AI近乎完美适配:推理更快速、查询更灵活、场景更丰富
随着MongoDB的新发布和革新,YoMio.AI的“闪电式发展”值得期待。
|
3月前
|
人工智能 自然语言处理 自动驾驶
【通义】AI视界|马斯克亲自辟谣:xAI不可能在特斯拉的推理计算机上运行
本文精选了24小时内的重要科技新闻,包括马斯克辟谣xAI不会运行在特斯拉计算机上、谷歌发布AlphaProteo AI模型、百度贴吧“弱智吧”成为AI训练佳选、荣耀推出跨应用智能体以及苹果即将在iOS 18.2中加入图像生成功能。更多内容请访问通义官网体验。
|
3月前
|
机器学习/深度学习 人工智能 开发框架
智能ai量化高频策略交易软件、现货合约跟单模式开发技术规则
该项目涵盖智能AI量化高频策略交易软件及现货合约跟单模式开发,融合人工智能、量化交易与软件工程。软件开发包括需求分析、技术选型、系统构建、测试部署及运维;跟单模式则涉及功能定义、策略开发、交易执行、终端设计与市场推广,确保系统高效稳定运行。
|
4月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多样化的选择,包括CPU+GPU、CPU+FPGA等多种配置,适用于人工智能、机器学习和深度学习等计算密集型任务。其中,GPU服务器整合高性能CPU平台,单实例可实现最高5PFLOPS的混合精度计算能力。根据不同GPU类型(如NVIDIA A10、V100、T4等)和应用场景(如AI训练、推理、科学计算等),价格从数百到数千元不等。详情及更多实例规格可见阿里云官方页面。
265 1
|
4月前
|
人工智能 异构计算
就AI 基础设施的演进与挑战问题之大模型推理中需要进行算子融合的问题如何解决
就AI 基础设施的演进与挑战问题之大模型推理中需要进行算子融合的问题如何解决
|
4月前
|
机器学习/深度学习 人工智能 数据挖掘
通义语音AI技术问题之TTS的生成效果和流式推理高效性如何解决
通义语音AI技术问题之TTS的生成效果和流式推理高效性如何解决
73 5
|
4月前
|
人工智能 内存技术
通义语音AI技术问题之预训练模型的推理与微调如何解决
通义语音AI技术问题之预训练模型的推理与微调如何解决
42 4

热门文章

最新文章