EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 模型版本:提供 24 亿、78 亿和 320 亿参数的三个版本,适应不同应用场景。
  2. 长文本处理:支持长达 32K tokens 的上下文处理,有效降低模型幻觉问题。
  3. 多步推理:结合检索增强生成技术,提升模型在复杂场景中的准确性。

正文(附运行示例)

EXAONE 3.5 是什么

公众号: 蚝油菜花 - EXAONE-3.5

EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,包含 24 亿、78 亿和 320 亿参数的三个版本。该模型擅长长文本处理,在基准测试中表现优异,特别是在实际应用、长文本处理和数学方面。

EXAONE 3.5 采用检索增强生成技术和多步推理能力,有效降低错误信息,提高准确性。LG 计划进一步扩展其 AI 能力,并推出企业级 AI 智能体服务 ChatEXAONE,具备复杂的查询分析和用户自定义搜索功能,配备加密和隐私保护技术,确保在公司内部安全使用。

EXAONE 3.5 的主要功能

  • 多版本模型支持:提供三种不同参数规模的模型,适应不同的应用场景和计算资源限制。
  • 指令遵循能力:在实际场景中具有卓越的指令遵循能力,在多个基准测试中取得最高分。
  • 长上下文理解:在长文本处理方面表现出色,有效理解和处理长达 32K tokens 的上下文。
  • 双语能力:优秀的韩语和英语双语能力,特别是在韩国和英语的基准测试中表现突出。
  • 检索增强生成技术:基于参考文档或网络搜索结果生成答案。
  • 多步推理能力:具备多步推理能力,有效降低“幻觉”现象,提高答案的准确性。

EXAONE 3.5 的技术原理

  • Transformer 架构:基于最新的仅解码器(decoder-only)Transformer 架构,用于处理序列数据。
  • 长上下文处理:采用长上下文微调技术,将最大上下文长度从 EXAONE 3.0 的 4,096 tokens 扩展到 32,768 tokens。
  • 预训练和后训练
    • 预训练:第一阶段用大型训练语料库进行预训练,第二阶段针对需要加强的领域进行数据收集和预训练,特别是增强长上下文理解能力。
    • 后训练:包括监督式微调(SFT)和偏好优化,加强模型的指令遵循能力和与人类偏好的一致性。
  • 数据合规性:在数据收集、模型训练和信息提供过程中进行 AI 合规性审查,最小化法律风险。
  • 检索增强生成(RAG)技术:结合检索和生成,让模型能处理更长的上下文,在复杂场景中应用。

如何运行 EXAONE 3.5

以下是一个简单的 Python 示例,展示如何使用 EXAONE 3.5 模型:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 选择你的提示
prompt = "Explain how wonderful you are"  # 英文示例
# prompt = "스스로를 자랑해 봐"       # 韩文示例

messages = [
    {
   "role": "system", "content": "You are EXAONE model from LG AI Research, a helpful assistant."},
    {
   "role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt"
)

output = model.generate(
    input_ids.to("cuda"),
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=128,
    do_sample=False,
)
print(tokenizer.decode(output[0]))

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
7天前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
18天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
678 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
19天前
|
人工智能 自然语言处理 数据库
超越传统搜索:RAG如何让AI更懂你
超越传统搜索:RAG如何让AI更懂你
332 109
|
19天前
|
人工智能 数据库 索引
超越幻觉:检索增强生成如何为AI大模型“装上”事实核查系统
超越幻觉:检索增强生成如何为AI大模型“装上”事实核查系统
206 107
|
19天前
|
人工智能 自然语言处理 数据库
超越关键词搜索:RAG如何让AI真正“理解”你的问题
超越关键词搜索:RAG如何让AI真正“理解”你的问题
205 102
|
19天前
|
人工智能 自然语言处理 搜索推荐
超越幻觉:RAG如何为AI大模型注入“真实”的灵魂
超越幻觉:RAG如何为AI大模型注入“真实”的灵魂
169 81
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
247 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
|
21天前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
194 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
7天前
|
人工智能 搜索推荐 UED
一个牛逼的国产AI自动化工具,开源了 !
AiPy是国产开源AI工具,结合大语言模型与Python,支持本地部署。用户只需用自然语言描述需求,即可自动生成并执行代码,轻松实现数据分析、清洗、可视化等任务,零基础也能玩转编程,被誉为程序员的智能助手。
|
9天前
|
人工智能 JSON 监控
三步构建AI评估体系:从解决“幻觉”到实现高效监控
AI时代,评估成关键技能。通过错误分析、归类量化与自动化监控,系统化改进AI应用,应对幻觉等问题。Anthropic与OpenAI均强调:评估是产品迭代的核心,数据驱动优于直觉,让AI真正服务于目标。

热门文章

最新文章