EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 模型版本:提供 24 亿、78 亿和 320 亿参数的三个版本,适应不同应用场景。
  2. 长文本处理:支持长达 32K tokens 的上下文处理,有效降低模型幻觉问题。
  3. 多步推理:结合检索增强生成技术,提升模型在复杂场景中的准确性。

正文(附运行示例)

EXAONE 3.5 是什么

公众号: 蚝油菜花 - EXAONE-3.5

EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,包含 24 亿、78 亿和 320 亿参数的三个版本。该模型擅长长文本处理,在基准测试中表现优异,特别是在实际应用、长文本处理和数学方面。

EXAONE 3.5 采用检索增强生成技术和多步推理能力,有效降低错误信息,提高准确性。LG 计划进一步扩展其 AI 能力,并推出企业级 AI 智能体服务 ChatEXAONE,具备复杂的查询分析和用户自定义搜索功能,配备加密和隐私保护技术,确保在公司内部安全使用。

EXAONE 3.5 的主要功能

  • 多版本模型支持:提供三种不同参数规模的模型,适应不同的应用场景和计算资源限制。
  • 指令遵循能力:在实际场景中具有卓越的指令遵循能力,在多个基准测试中取得最高分。
  • 长上下文理解:在长文本处理方面表现出色,有效理解和处理长达 32K tokens 的上下文。
  • 双语能力:优秀的韩语和英语双语能力,特别是在韩国和英语的基准测试中表现突出。
  • 检索增强生成技术:基于参考文档或网络搜索结果生成答案。
  • 多步推理能力:具备多步推理能力,有效降低“幻觉”现象,提高答案的准确性。

EXAONE 3.5 的技术原理

  • Transformer 架构:基于最新的仅解码器(decoder-only)Transformer 架构,用于处理序列数据。
  • 长上下文处理:采用长上下文微调技术,将最大上下文长度从 EXAONE 3.0 的 4,096 tokens 扩展到 32,768 tokens。
  • 预训练和后训练
    • 预训练:第一阶段用大型训练语料库进行预训练,第二阶段针对需要加强的领域进行数据收集和预训练,特别是增强长上下文理解能力。
    • 后训练:包括监督式微调(SFT)和偏好优化,加强模型的指令遵循能力和与人类偏好的一致性。
  • 数据合规性:在数据收集、模型训练和信息提供过程中进行 AI 合规性审查,最小化法律风险。
  • 检索增强生成(RAG)技术:结合检索和生成,让模型能处理更长的上下文,在复杂场景中应用。

如何运行 EXAONE 3.5

以下是一个简单的 Python 示例,展示如何使用 EXAONE 3.5 模型:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# 选择你的提示
prompt = "Explain how wonderful you are"  # 英文示例
# prompt = "스스로를 자랑해 봐"       # 韩文示例

messages = [
    {
   "role": "system", "content": "You are EXAONE model from LG AI Research, a helpful assistant."},
    {
   "role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt"
)

output = model.generate(
    input_ids.to("cuda"),
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=128,
    do_sample=False,
)
print(tokenizer.decode(output[0]))

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
20天前
|
数据采集 存储 人工智能
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
|
21天前
|
人工智能 运维 安全
基于合合信息开源智能终端工具—Chaterm的实战指南【当运维遇上AI,一场效率革命正在发生】
在云计算和多平台运维日益复杂的今天,传统命令行工具正面临前所未有的挑战。工程师不仅要记忆成百上千条操作命令,还需在不同平台之间切换终端、脚本、权限和语法,操作效率与安全性常常难以兼顾。尤其在多云环境、远程办公、跨部门协作频繁的背景下,这些“低效、碎片化、易出错”的传统运维方式,已经严重阻碍了 IT 团队的创新能力和响应速度。 而就在这时,一款由合合信息推出的新型智能终端工具——Chaterm,正在悄然颠覆这一现状。它不仅是一款跨平台终端工具,更是业内率先引入 AI Agent 能力 的“会思考”的云资源管理助手。
85 6
|
24天前
|
数据采集 人工智能 编解码
2025年颠覆闭源大模型?MonkeyOCR:这款开源AI文档解析模型,精度更高,速度更快!
还在依赖昂贵且慢的闭源OCR工具?华中科技大学开源的MonkeyOCR文档解析模型,以其超越GPT4o的精度和更快的推理速度,在单机单卡(3090)上即可部署,正颠覆业界认知。本文将深入解析其设计哲学、核心突破——大规模自建数据集,并分享实测体验与避坑指南。
371 0
|
1月前
|
人工智能 自然语言处理 前端开发
上线几天,轻松斩获10k,开源通用AI智能体Suna:一句话自动处理Excel/爬数据/写报告,程序员私人助理诞生!
Suna是由Kortix推出的全球首个开源通用型AI Agent,可通过自然语言对话自动完成浏览器操作、数据分析、系统管理等复杂任务。它具有“执行力”,能像人类员工一样理解指令并操作数字工具,支持自托管保障数据安全,适用于市场分析、学术研究、企业办公等场景。Suna的核心优势在于实现“语言→行动”的转化,适合需要实际操作的任务,如爬虫、报表生成和网站部署。项目地址为:https://github.com/kortix-ai/suna。
146 0
|
2月前
|
数据采集 人工智能 算法
面向AI应用开发的开源能源管理系统
人工智能在能源管理中发挥关键作用,通过优化资源分配、智能消费管理、精准监测预测以及改善客户体验等多方面推动行业转型。MyEMS作为重要工具,基于Python语言集成AI技术,实现数据采集处理、负荷预测、能源优化控制、故障诊断预警及可视化展示等功能,提供全面智能化解决方案,助力可持续发展与能源效率提升。
68 0
|
2月前
|
人工智能 数据安全/隐私保护 Docker
短短时间,疯狂斩获1.9k star,开源AI神器AingDesk:一键部署上百模型,本地运行还能联网搜索!
AingDesk 是一款开源的本地 AI 模型管理工具,已获 1.9k Star。它支持一键部署上百款大模型(如 DeepSeek、Llama),适配 CPU/GPU,可本地运行并联网搜索。五大核心功能包括零门槛模型部署、实时联网搜证、私人知识库搭建、跨平台共享和智能体工厂,满足学术、办公及团队协作需求。相比 Ollama 和 Cherry Studio,AingDesk 更简单易用,适合技术小白、团队管理者和隐私敏感者。项目地址:https://github.com/aingdesk/AingDesk。
284 3
|
2月前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
448 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
2月前
|
机器学习/深度学习 人工智能 Kubernetes
开源AI驱动的商业综合体保洁管理——智能视频分析系统的技术解析
智能保洁管理系统通过计算机视觉与深度学习技术,解决传统保洁模式中监管难、效率低的问题。系统涵盖垃圾滞留监测、地面清洁度评估、设施表面检测等功能,实现高精度(96%以上)、实时响应(<200毫秒)。基于开源TensorFlow与Kubernetes架构,支持灵活部署与定制开发,适用于商场、机场等场景,提升管理效率40%以上。未来可扩展至气味监测等领域,推动保洁管理智能化升级。
138 26
|
2月前
|
人工智能 自然语言处理 数据可视化
中国版“Manus”开源?AiPy:用Python重构AI生产力的通用智能体
AiPy是LLM大模型+Python程序编写+Python程序运行+程序可以控制的一切。

热门文章

最新文章