【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。

1. ClickHouse 的物化视图是什么?

ClickHouse 的物化视图(Materialized View)是一种特殊的表,它根据预定义的查询语句自动维护数据。与传统的关系数据库中的视图不同,物化视图在物理上存储了查询结果,而不是在每次查询时重新计算。这意味着物化视图可以显著提高查询性能,特别是对于复杂的聚合查询。

2. ClickHouse 的物化视图解决了什么问题?

  1. 查询性能提升:物化视图通过预先计算并存储查询结果,减少了每次查询时的计算开销,从而显著提高了查询性能。
  2. 减少资源消耗:对于频繁执行的复杂查询,物化视图可以减少 CPU 和内存的使用,降低系统负载。
  3. 实时数据分析:物化视图可以实时更新,确保查询结果的时效性,适用于需要实时数据分析的场景。
  4. 简化查询:用户可以直接查询物化视图,而无需编写复杂的查询语句,简化了数据访问和分析的过程。

3. ClickHouse 的物化视图的应用场景

  1. 实时报表:生成实时报表,如用户行为分析、销售统计等,物化视图可以预先计算并存储聚合结果,提高报表生成的速度。
  2. 日志分析:处理和分析大规模的日志数据,如 Web 服务器日志、应用程序日志等,物化视图可以预先计算常见的聚合指标。
  3. 用户行为分析:分析用户的行为数据,如点击流、购买记录等,物化视图可以预先计算用户的行为特征。
  4. 金融数据分析:处理高频交易数据,进行风险管理、市场分析等,物化视图可以预先计算复杂的金融指标。
  5. 物联网数据分析:处理 IoT 设备产生的大量数据,如传感器数据、设备状态等,物化视图可以预先计算设备的状态和性能指标。

4. ClickHouse 的物化视图的底层原理

  1. 定义和创建

    • 物化视图通过 CREATE MATERIALIZED VIEW 语句定义,并指定一个 TO 子句,指向一个目标表。
    • 物化视图的定义中包含一个 SELECT 查询,该查询的结果会被插入到目标表中。
  2. 数据插入

    • 当数据插入到源表时,ClickHouse 会自动触发物化视图的 SELECT 查询,并将结果插入到目标表中。
    • 这个过程是异步的,确保不会影响源表的插入性能。
  3. 数据更新

    • 物化视图的目标表是普通的 ClickHouse 表,可以进行常规的查询和操作。
    • 如果需要更新物化视图的数据,可以通过删除和重建物化视图来实现。
  4. 数据一致性

    • ClickHouse 通过事务机制保证物化视图的数据一致性,确保源表和目标表之间的数据同步。

5. ClickHouse 的物化视图的实战案例

假设我们有一个电子商务网站,需要实时分析用户的购买行为。我们有一个 orders 表,记录了用户的订单信息,现在我们需要创建一个物化视图来预先计算每天的销售额。

1. 创建源表
CREATE TABLE orders (
    order_id UInt64,
    user_id UInt64,
    order_date Date,
    amount Float64
) ENGINE = MergeTree()
ORDER BY (order_date, user_id);
2. 创建物化视图
CREATE MATERIALIZED VIEW daily_sales
ENGINE = SummingMergeTree()
ORDER BY (order_date)
AS
SELECT
    order_date,
    SUM(amount) AS total_sales
FROM orders
GROUP BY order_date;
3. 插入数据
INSERT INTO orders (order_id, user_id, order_date, amount) VALUES
(1, 101, '2023-10-01', 100.0),
(2, 102, '2023-10-01', 200.0),
(3, 103, '2023-10-02', 150.0),
(4, 104, '2023-10-02', 250.0);
4. 查询物化视图
SELECT * FROM daily_sales;

查询结果:

order_date  | total_sales
------------|-------------
2023-10-01  | 300.0
2023-10-02  | 400.0

ClickHouse 的物化视图通过预先计算并存储查询结果,显著提高了查询性能,减少了资源消耗,适用于需要实时数据分析的场景。物化视图的底层原理包括定义和创建、数据插入、数据更新和数据一致性保证。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
3天前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
|
4月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
291 2
|
7天前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
46 3
|
2月前
|
存储 监控 druid
Druid、ClickHouse、Doris、StarRocks 的区别与分析
本文对比了 Druid、ClickHouse、Doris 和 StarRocks 四款大数据分析引擎。它们均为 OLAP 引擎,采用列式存储和分布式架构,适用于海量数据分析。Druid 擅长实时分析与高并发查询;ClickHouse 以超高性能著称,适合复杂查询;Doris 提供易用的 SQL 接口,性能均衡;StarRocks 则以其极速查询和实时更新能力脱颖而出。各引擎在数据模型、查询性能、数据更新和存储方面存在差异,适用于不同的业务场景。选择时需根据具体需求综合考虑。
428 20
|
2月前
|
数据采集 存储 机器学习/深度学习
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
61 9
|
3月前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
302 15
|
3月前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
3月前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
4月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
240 4
|
4月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
87 4