django调用矩阵分解推荐算法模型做推荐系统

简介: django调用矩阵分解推荐算法模型做推荐系统


Django中调用推荐算法模型来构建推荐系统,通常需要几个步骤:训练模型、保存模型、在Django中加载模型以及使用模型进行推荐。以下是这个过程的一个简化示例:


步骤 1: 训练推荐算法模型


首先,你需要使用Python的机器学习库(例如scikit-learn、TensorFlow或PyTorch)来训练一个推荐算法模型。这里我们将使用scikit-learn的简单示例模型。


from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
import joblib
# 加载数据集
data = load_iris()
X, y = data.data, data.target
# 训练模型
model = RandomForestClassifier()
model.fit(X, y)
# 保存模型
joblib.dump(model, 'iris_rf_model.joblib')


步骤 2: 在Django项目中加载和使用模型


在你的Django项目中,你可以加载这个训练好的模型,并在视图中使用它来进行推荐。


首先,在你的Django项目中创建一个新的Python脚本或模块来加载模型。这样做的好处是,模型只需要在项目启动时加载一次,而不是每次请求时都加载。


# 在Django项目的某个模块中,例如recommendations.py
import joblib
# 假设你的模型文件存放在Django项目的根目录下
model_path = 'iris_rf_model.joblib'
model = joblib.load(model_path)
def make_recommendation(input_data):
    # 使用模型进行预测
    prediction = model.predict([input_data])
    return prediction


接下来,在你的Django视图中,使用这个模块来进行推荐。


# 在views.py中
from django.http import JsonResponse
from .recommendations import make_recommendation
def recommend(request):
    # 假设请求包含JSON数据,并且数据的格式是我们模型可以接受的
    input_data = request.GET.get('data')
    
    # 将字符串数据转换为Python列表,这里假设输入是逗号分隔的字符串
    input_data = [float(value) for value in input_data.split(',')]
    # 调用我们的推荐函数
    prediction = make_recommendation(input_data)
    
    # 将推荐结果返回给客户端
    return JsonResponse({'recommendation': prediction.tolist()})
# 在urls.py中添加路由
from django.urls import path
from . import views
urlpatterns = [
    path('recommend/', views.recommend, name='recommend'),
]


步骤 3: 调用推荐接口


最后,用户可以通过发送HTTP请求到你的Django服务来获取推荐。请求的URL可能看起来像这样:


http://yourdomain.com/recommend/?data=5.1,3.5,1.4,0.2


用户发送请求后,Django视图将处理请求,使用加载的模型进行推荐,并将结果返回给用户。


换成SVD算法


在构建更复杂的推荐系统时,我们可以考虑使用协同过滤(Collaborative Filtering,CF),尤其是矩阵分解(Matrix Factorization)技术,比如使用Python中的surprise库来训练模型。以下是一个使用surprise库构建的电影推荐系统示例:

首先,你需要安装surprise库:


pip install scikit-surprise


步骤 1: 训练推荐算法模型


使用surprise库训练一个SVD(奇异值分解)模型。


from surprise import SVD
from surprise import Dataset
from surprise import Reader
from surprise.model_selection import cross_validate
import os
import joblib
# 加载数据
data = Dataset.load_builtin('ml-100k')
# 使用SVD算法
algo = SVD()
# 进行交叉验证(这里只是为了简化示例,实际上你应该使用一个独立的验证集)
cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
# 训练整个数据集
trainset = data.build_full_trainset()
algo.fit(trainset)
# 保存模型
joblib.dump(algo, 'movie_recommender.joblib')


步骤 2: 在Django项目中加载和使用模型


在Django项目中使用这个训练好的模型。


# 在recommendations.py中
import joblib
# 加载模型
model_path = 'movie_recommender.joblib'
model = joblib.load(model_path)
def make_recommendation(user_id, item_id):
    # 使用模型进行评分预测
    prediction = model.predict(str(user_id), str(item_id))
    return prediction.est


在你的Django视图中使用这个模块来进行推荐。


# 在views.py中
from django.http import JsonResponse
from .recommendations import make_recommendation
def recommend(request, user_id, item_id):
    # 调用推荐函数
    prediction = make_recommendation(user_id, item_id)
    
    # 将预测评分返回给客户端
    return JsonResponse({'estimated_rating': prediction})
# 在urls.py中添加路由
from django.urls import path
from . import views
urlpatterns = [
    path('recommend/<int:user_id>/<int:item_id>/', views.recommend, name='recommend'),
]


步骤 3: 调用推荐接口


用户可以通过发送HTTP请求到你的Django服务来获取推荐。例如,如果一个用户的ID为123,他们对电影ID为456的评分预测可以通过以下URL获得:


http://yourdomain.com/recommend/123/456/


该请求将被Django视图处理,并使用加载的模型来预测用户对电影的评分,然后返回结果。


展示了如何在Django中使用一个基于矩阵分解的推荐算法。


相关文章
|
2月前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
147 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
169 2
|
2月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
2月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
2月前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
169 0
|
2月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
179 0
|
3月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
118 2
|
2月前
|
机器学习/深度学习 存储 算法
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习模型、算法与应用的全方位解析
深度学习,作为人工智能(AI)的一个重要分支,已经在多个领域产生了革命性的影响。从图像识别到自然语言处理,从语音识别到自动驾驶,深度学习无处不在。本篇博客将深入探讨深度学习的模型、算法及其在各个领域的应用。
808 3

热门文章

最新文章