动态规划算法学习一:DP的重要知识点、矩阵连乘算法

简介: 这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。

前言

  • 三部曲如下三步:
  1. 基本原则:“空间换时间” 存储重复子问题的解,减少运算时间
  2. 底层运算:“表格操作” 用表格存储子问题的解
  3. 实现路线:“子问题划分、自底向上求解” 利用表格中存储的子问题的解,求上一层子问题的解。

一、矩阵连乘问题

1、问题描述

1、
在这里插入图片描述

2、完全加括号

矩阵连乘计算次序 可以用 加括号的方式 来确定。特别的,完全加括号的矩阵连乘积可递归地定义为:

  • 单个矩阵是完全加括号的
  • 矩阵连乘积 A 是完全加括号的,则 A 可示为2个完全加括号的矩阵连乘积 B 和 C 的乘积并加括号,即 A=(BC)

在这里插入图片描述

3、问题分析

给定n个矩阵𝐴1,⋯, 𝐴𝑛,其中第i个矩阵的维度为𝑝(𝑖−1)×𝑝𝑖,以及它们的一个完全加括号方案:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、最优子结构性质

构建原问题最优解 与 子问题最优解之间的关系:
在这里插入图片描述

5、状态表示和递推方程

在这里插入图片描述

6、自问题个数和求解顺序

在这里插入图片描述

二、计算最优值示例

1、问题描述

在这里插入图片描述

2、计算最优值示例*****

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

按以下顺序计算:

  1. 第一次计算(遍历):
    m(1,2)=30 * 35 * 15 = 15750
    m(2,3)=35 * 15 * 5 = 2625
    m(3,4)=15 * 5 * 10 = 750
    m(4,5)=5 * 10 * 20 = 1000
    m(5,6)=10 * 20 * 25 = 5000
  2. 第二次计算(遍历)
    • m(1,3) =7875时,有两种情况,k = 1 或者 k =2 时,(下面的数据就可以使用上面算法的,这就是自底向上)
      k=1时,m(1,1)+m(2,3)+30 * 35 * 5= 7875
      k=2时,m(1,2)+m(3,3)+30 * 15 * 5= 23000
      最小的值为7875,
    • m(2,4)=4375时,有两种情况,k = 2 或者k =3 时,(同上)
      k = 2时,m(2,2)+m(3,4)+35 * 15 * 10 = 6000
      k = 3时,m(2,3)+m(3,3)+35 * 5 * 10 = 4375
      最小的值为 4375
    • 后面同上计算,依次是:
    • m(3,5)=2500,k=3 或者 k=4
    • m(4,6)=3500,k=4 或者 k=5
  3. 第三次计算(遍历)
    • m(1,4)=9375时,k 有三次情况,k=1,k=2,k=3,(同上)
      k=1时,m(1,1)+m(2,4)+30 * 35 * 10 = 14875
      k=2时,m(1,2)+m(3,4)+30 * 15 * 10 = 21000
      k=3时,m(1,3)+m(4,4)+30 * 5 * 10 = 9375
    • m(2,5)=7125时,k 有三次情况,k=2,k=3,k=4
      k = 2,m(2,2)+m(3,5)+35 * 15 * 20 = 13000
      k = 3,m(2,3)+m(4,5)+35 * 5 * 20 = 7125
      k = 4,m(2,4)+m(5,5)+35 * 10 * 20 = 11375
    • m(3,6)=5375
  4. 第四次计算(遍历)
    • m(1,5)=11875时,k 有四次情况,k=1,k=2,k=3,k=4,(同上)
      k=1时,m(1,1)+m(2,5)+30 * 35 * 20 = 28125
      k=2时,m(1,2)+m(3,5)+30 * 15 * 20 = 27250
      k=3时,m(1,3)+m(4,5)+30 * 5 * 20 = 11875
      k=4时,m(1,4)+m(5,5)+30 * 10 * 20 = 15375
    • m(2,6)=10500
  5. 第五次计算(遍历)
    • m(1,6)= 15125时,k 有五次情况,k=12345,(同上)
      k = 1时,m(1,1)+m(2,6)+30 * 35 * 25 = 36750
      k = 2时,m(1,2)+m(3,6)+30 * 15 * 25 = 34250
      k = 3时,m(1,3)+m(4,6)+30 * 5 * 25 = 15125
      k = 4时,m(1,4)+m(5,6)+30 * 10 * 25 = 21875
      k = 5时,m(1,5)+m(5,5)+30 * 20 * 25 = 26875
      在这里插入图片描述

3、构造最优解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、算法实现

import java.util.Scanner;

/**
 * DP 算法之 矩阵连乘
 */
public class Main {

    public  static long[][] memoTable;   // 存放局部最优值
    public  static int[][]  bestK ;      // 存放 划括号k 的位置
    public  static int[]    dim ;        // 存放矩阵的值
    public  static int      matrixNum;   // 二位矩阵 的维度

    /**
     * 自底向上地计算最优值,结果保存在全局变量memoTable和bestK中
     * @param matrixNum
     * @return
     */
    static long MatrixChain(int matrixNum) {
        int i,j,len,k;
        for(i=1; i<=matrixNum; i++) //单个矩阵的情形,定义数乘次数为0
            memoTable[i][i] = 0;
        for(len=2; len<=matrixNum; len++){ //计算长度为len的矩阵链最优值
            for(i=1; i<=matrixNum-len+1; i++) { //矩阵链的开始矩阵下标
                j = i+len-1;                    //矩阵链的结束矩阵下标
                memoTable[i][j] = 100000000;    //预定义的一个充分大数
                for(k=i; k<j; k++) {  //枚举划分位置
                    long ans = memoTable[i][k] + memoTable[k+1][j] +
                            dim[i-1]*dim[k]*dim[j];
                    if (ans < memoTable[i][j]){ //更新最优信息
                        bestK[i][j] = k;
                        memoTable[i][j] = ans;
                    }
                }//end of for k
            }//end of for i
        }//end of for len
        return memoTable[1][matrixNum];
    }

    /**
     * 递归构造最优解
     * @param i
     * @param j
     * @param bestK
     * @return
     */
    public static String traceback(int i,int j,int[][] bestK) {
        if(i==j) {
            return String.format("A%s", i);
        }
        if(i==j-1){
            return String.format("A%sA%s", i, j);
        }
        int position = bestK[i][j];
        StringBuilder sb = new StringBuilder();
        if(i!=position) {
            sb.append("(");
        }
        sb.append(traceback(i, position, bestK));
        if(i!=position) {
            sb.append(")");
        }
        if(position+1!=j) {
            sb.append("(");
        }
        sb.append(traceback(position+1, j, bestK));
        if(position+1!=j) {
            sb.append(")");
        }
        return sb.toString();
    }

    public static void main(String[] args) {
        Scanner in = new Scanner(System.in);
        System.out.println("请输入矩阵的个数:");
        matrixNum = in.nextInt();
        System.out.println("请输入矩阵的行数和列数:");
        dim = new int[matrixNum+1];
        for(int i = 0;i <= matrixNum;i++) {
            dim[i] = in.nextInt();
        }
        memoTable = new long[matrixNum+1][matrixNum+1];
        bestK = new int[matrixNum+1][matrixNum+1];
        long min = MatrixChain(matrixNum);
        System.out.println("矩阵连乘的最小次数是:" + min);
        System.out.println(String.format("矩阵的连乘次序:%s", traceback(1, matrixNum, bestK)));
    }
}

三、基本要素-最优子结构

  • 最优子结构性质,通俗地讲就是问题的最优解包含其子问题的最优解。也就是说,如果把问题的最优解分解(比如划分为两个或者多个部分,或者删除第一个或者最后一个分量),得到一个子解,那么这个子解是其相应子问题最优解
    在这里插入图片描述
  • 最优子结构性质隐含了问题最优解和子问题最优解之间的一种递推关系。它是动态规划的基础,递推方程是最优子结构性质的体现。
  • 在分析问题的最优子结构性质时,人们一般采用 反证法 :首先假设由问题最优解S导出的子问题的解不是最优的,然后再推导在这个假设下可构造出比S更好的解 S’,从而得到矛盾。

四、基本要素-重叠子问题

  • 递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。这种性质称为子问题的重叠性质
  • 动态规划算法,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果。
  • 通常不同的子问题个数随问题的大小呈多项式增长。因此用动态规划算法只需要多项式时间,从而获得较高的解题效率。 【降低复杂度不是本章的目标了!!

五、递归方法

long MatrixChain(int i, int j){
    if (i == j) {//单个矩阵的情形
             memoTable[i][j] = 0;
        return 0;
    }
    long ans, min = 100000000;//预定义的一个充分大数

    for (int k=i; k<j; k++) {

        ans = MatrixChain(i,k) + MatrixChain(k+1,j)
 + dim[i-1]*dim[k]*dim[j]; //递归计算
        if (ans < min) {
            min = ans;
        }
    }
   return min;   }

在这里插入图片描述

六、备忘录方法

在这里插入图片描述

//递归调用前用 memset(memoTable,-1,sizeof(memoTable))初始化备忘录表为-1
long MatrixChainMemo(int i,int j){
    if (memoTable[i][j] != -1)
        return memoTable[i][j]; //备忘录表中有答案,则跳出递归调用过程
    if (i == j) {//单个矩阵的情形
             memoTable[i][j] = 0;
        return 0;
    }
    long ans,max = 100000000;//预定义的一个充分大数
    for (int k=i; k<j; k++) {
        ans = MatrixChainMemo(i,k)+MatrixChainMemo(k+1,j)
+dim[i-1]*dim[k]*dim[j]; //递归计算
        if (ans < max) {
            bestK[i][j]=k;
            max = ans;
        }
    }
    memoTable[i][j] = max;  //用递归执行结果更新备忘录表
    return max;
}

七、动态规划算法设计的步骤

  1. 分析最优解的性质,并刻划其最优子结构特征;
  2. 确定状态表示S(x~1~,x~2~,…)状态递推方程,递归地定义最优值;
  3. 确定状态转移顺序,以自底向上的方式计算出最优值;(从最小问题计算起,保存最优子结果,在计算更大的问题时就可以调用之)
  4. 根据计算最优值时得到的信息,构造最优解
相关文章
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
1月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
48 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
IKU达人之数据结构与算法系列学习×单双链表精题详解、数据结构、C++、排序算法、java 、动态规划 你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
15天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
8天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。