数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!

简介: 在数据科学与机器学习领域,数据可视化是理解数据和优化模型的关键。Python凭借其强大的可视化库Matplotlib和Seaborn成为首选语言。本文通过分析一份包含房屋面积、卧室数量等特征及售价的数据集,展示了如何使用Matplotlib绘制散点图,揭示房屋面积与售价的正相关关系;并利用Seaborn的pairplot探索多变量间的关系。在机器学习建模阶段,通过随机森林模型展示特征重要性的可视化,帮助优化模型。这两个库在数据分析与建模中展现出广泛的应用价值。

在数据科学与机器学习的广阔领域中,数据可视化不仅是理解数据的第一步,更是洞察数据深层规律、优化模型性能的关键手段。Python作为这一领域的首选语言,其强大的数据可视化库Matplotlib和Seaborn,为数据分析师和机器学习工程师提供了丰富而灵活的工具集。今天,我们将通过一个案例分析,探索Matplotlib与Seaborn在数据分析与机器学习中的新应用视角。

案例背景
假设我们拥有一份关于房屋售价的数据集,包括房屋面积、卧室数量、地理位置等多个特征,以及对应的售价作为目标变量。我们的目标是分析这些特征如何影响房屋售价,并可能进一步构建一个预测模型。在这个过程中,数据可视化将发挥至关重要的作用。

数据分析阶段
步骤一:数据探索

首先,我们使用Matplotlib来绘制房屋面积与售价的散点图,快速了解两者之间的关系。

python
import matplotlib.pyplot as plt
import pandas as pd

假设df是已经加载的DataFrame

plt.figure(figsize=(10, 6))
plt.scatter(df['面积'], df['售价'], alpha=0.5)
plt.xlabel('房屋面积 (平方米)')
plt.ylabel('售价 (万元)')
plt.title('房屋面积与售价的关系')
plt.grid(True)
plt.show()
从图中我们可以初步观察到,房屋面积与售价之间存在正相关关系,但也可能存在其他影响因素。

步骤二:多变量分析

接下来,我们使用Seaborn的pairplot来探索多个变量之间的关系。

python
import seaborn as sns

假设我们只关注面积、卧室数量和售价

sns.pairplot(df[['面积', '卧室数量', '售价']], diag_kind='kde')
plt.show()
pairplot不仅展示了变量间的散点图,还通过密度图(KDE)展示了每个变量的分布情况。这有助于我们更全面地理解数据特征之间的相互作用。

机器学习建模阶段
在确定了数据特征后,我们可能会构建一个预测模型来估算房屋售价。在模型训练过程中,数据可视化同样重要。

步骤三:特征重要性可视化

假设我们使用随机森林模型进行预测,并希望得到特征的重要性排序。虽然Matplotlib和Seaborn不直接提供特征重要性可视化功能,但我们可以利用它们来绘制结果。

python
from sklearn.ensemble import RandomForestRegressor
import numpy as np

假设X_train, y_train是已经划分好的训练集

model = RandomForestRegressor(n_estimators=100)
model.fit(X_train, y_train)

获取特征重要性

importances = model.featureimportances
indices = np.argsort(importances)[::-1]

可视化特征重要性

plt.figure(figsize=(10, 6))
plt.title('特征重要性')
plt.bar(range(X_train.shape[1]), importances[indices],
color="r", align="center")
plt.xticks(range(X_train.shape[1]), X_train.columns[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.show()
通过上述代码,我们可以直观地看到哪些特征对预测房屋售价最为重要,进而优化模型或进一步探索这些特征背后的原因。

结语
通过本次案例分析,我们看到了Matplotlib和Seaborn在Python数据分析与机器学习中的广泛应用与独特价值。它们不仅帮助我们理解数据的结构与规律,还在模型训练与优化过程中发挥着不可替代的作用。在未来的数据探索与建模旅程中,让我们继续深入挖掘这两个库的潜力,以全新的视角洞察数据的奥秘。

相关文章
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
21 2
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
9天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
16 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
53 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。