基于GA遗传优化的TSP问题最优路线规划matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。

1.程序功能描述
旅行商问题(Traveling Salesman Problem, TSP)是计算机科学和运筹学中的经典问题,其目标是寻找访问一系列城市并返回起始城市的最短可能路线。此问题属于NP-难问题,对于大规模的实例,精确的求解方法在计算上不可行。因此,启发式方法,特别是遗传算法(Genetic Algorithms, GA),在解决TSP问题上非常受欢迎。本课题中,使用遗传算法,实现TSP问题的求解。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

784b189adc6d306ae12752b1feb458e8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
743686388fa635088493f7bd09bfce02_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

%人口规模
Npop = 200;
%交叉所需的染色体对数
c    = 20;
%诱变所需的染色体数目
m    = 10;
%总代数
Iters= 4000;

%城市个数
NUM  = 30;
Data = [[1:NUM]',1000*rand(NUM,2)];

[x, y] = size(Data);
nc     = x;  
P      = func_initial(Npop,nc);

for i=1:Iters
    i
    % 交叉(single-point crossover)操作,用于遗传算法中的染色体交叉步骤。
    % 在每一次循环中,它随机选择一个父代染色体,并在随机选择的交叉点处将其切割,
    % 然后将切割下来的基因片段移动到染色体的末尾,从而生成一个新的子代染色体。
    P(Npop+1:Npop+c,:)     = func_crossover(P,c);
    % 实现的是染色体的突变操作。在遗传算法中,突变是增加种群多样性的重要步骤。
    % 对于每一个需要突变的染色体,函数随机选择两个基因位置,并交换这两个位置的基因值,从而实现染色体的突变。
    P(Npop+c+1:Npop+c+m,:) = func_mutation(P,m);
    % 一个种群中每个染色体的适应度。染色体代表一种城市的排列方式,
    % 适应度是根据城市之间的距离来计算的。
    % 代码首先根据染色体的基因值在Data中找到对应的城市位置,
    % 然后计算相邻城市之间的距离,并将这些距离存储在矩阵B中。
    % 最后,计算适应度值,即距离的倒数之和,并将适应度值存储在矩阵Y中。
    E                = func_evaluation(P,Data);
    [P, S]           = func_selection(P,E,Npop);
    Yavg(i)          = sum(S)/Npop;
    Ybest(i)         = sum(S)/Npop;
end

figure
plot(Yavg,'r'); 
hold on
plot(Ybest,'b'); 
xlabel('迭代次数')
ylabel('适应度收敛曲线')
grid on 


[V,I]    = min(Ybest);
opt_res  = P(1,:);
[x1, y1] = size(opt_res);

figure
plot(Data(:,2),Data(:,3),'go', 'MarkerSize',5,'LineWidth',2)
hold on 
for i=1:x
    text(Data(i,2)+0.25,Data(i,3)+0.25,num2str(i), 'FontSize', 12);
    hold on 
end
Data2 = zeros(size(Data));
for i=1:y1
    Data2(i,:) = Data(opt_res(i),:);
end
line(Data2(:,2),Data2(:,3),'LineStyle','-','LineWidth',2);
title('最优路线');
xlabel('X')
ylabel('Y')
12

4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是计算机科学和运筹学中的经典问题,其目标是寻找访问一系列城市并返回起始城市的最短可能路线。此问题属于NP-难问题,对于大规模的实例,精确的求解方法在计算上不可行。因此,启发式方法,特别是遗传算法(Genetic Algorithms, GA),在解决TSP问题上非常受欢迎。

4.1 遗传算法概述
遗传算法是一种模拟自然选择和遗传学机制的优化技术。它们通过模拟生物进化过程中的选择、交叉和变异操作来搜索问题的解空间。GA的主要优点是能够处理大量的参数,并有可能找到全局最优解,而不是仅仅陷入局部最优。

4.2 TSP问题描述
给定一个城市集合 (C = {c_1, c_2, ..., c_n}) 和每对城市 (c_i) 和 (c_j) 之间的距离 (d(c_i, c_j)),TSP的目标是找到访问每个城市一次并返回起始城市的最短路线。

我们可以表示一个TSP解为一个城市的排列 (\pi = (\pi_1, \pi_2, ..., \pi_n)),其中 (\pi_i) 是访问的第i个城市,且 (\pi_1 = \pi_n)(起始和结束于同一城市)。则该路线的总距离为:

(D(\pi) = \sum_{i=1}^{n-1} d(\pii, \pi{i+1}))

4.3 使用遗传算法解决TSP
编码:在GA中,每个解(在这里是一个TSP路线)都被编码为一个“染色体”。对于TSP,常用的编码方法是城市的排列。例如,一个染色体可以是 (2, 5, 1, 4, 3),表示从城市2开始,然后到5,1,4,最后回到2的路线。
初始化种群:随机生成一组初始解(染色体)作为起始种群。
适应度函数:用于评估每个染色体的“适应度”或质量。在TSP中,适应度函数通常是路线的总距离的倒数,因为我们希望最小化这个距离。
选择:选择操作是基于适应度来选择染色体以进行繁殖。常用的选择方法有轮盘赌选择、锦标赛选择等。 交叉:交叉操作模拟了生物繁殖中的基因重组。对于TSP,常用的交叉方法是部分映射交叉(PMX)和顺序交叉(OX)。以PMX为例,随机选择两个交叉点,然后交换两个父染色体之间的片段,并通过部分映射来修复任何重复的城市。
变异:模拟基因突变的过程,有助于维持种群的多样性。对于TSP的染色体编码,常见的变异方法有交换变异(随机交换两个城市的位置)和倒置变异(将染色体的一部分倒置)。
终止条件:算法迭代进行,直到满足终止条件(如达到最大迭代次数、达到预定的适应度水平或种群多样性降低到某一阈值)。
解码和结果:最后,最佳染色体被解码为TSP的解决方案,即访问城市的最佳顺序。

相关文章
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
12天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
24天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
100 11
|
18天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
197 15
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
3月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
4月前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
5月前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。