基于GA遗传优化的TSP问题最优路线规划matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。

1.程序功能描述
旅行商问题(Traveling Salesman Problem, TSP)是计算机科学和运筹学中的经典问题,其目标是寻找访问一系列城市并返回起始城市的最短可能路线。此问题属于NP-难问题,对于大规模的实例,精确的求解方法在计算上不可行。因此,启发式方法,特别是遗传算法(Genetic Algorithms, GA),在解决TSP问题上非常受欢迎。本课题中,使用遗传算法,实现TSP问题的求解。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

784b189adc6d306ae12752b1feb458e8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
743686388fa635088493f7bd09bfce02_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

%人口规模
Npop = 200;
%交叉所需的染色体对数
c    = 20;
%诱变所需的染色体数目
m    = 10;
%总代数
Iters= 4000;

%城市个数
NUM  = 30;
Data = [[1:NUM]',1000*rand(NUM,2)];

[x, y] = size(Data);
nc     = x;  
P      = func_initial(Npop,nc);

for i=1:Iters
    i
    % 交叉(single-point crossover)操作,用于遗传算法中的染色体交叉步骤。
    % 在每一次循环中,它随机选择一个父代染色体,并在随机选择的交叉点处将其切割,
    % 然后将切割下来的基因片段移动到染色体的末尾,从而生成一个新的子代染色体。
    P(Npop+1:Npop+c,:)     = func_crossover(P,c);
    % 实现的是染色体的突变操作。在遗传算法中,突变是增加种群多样性的重要步骤。
    % 对于每一个需要突变的染色体,函数随机选择两个基因位置,并交换这两个位置的基因值,从而实现染色体的突变。
    P(Npop+c+1:Npop+c+m,:) = func_mutation(P,m);
    % 一个种群中每个染色体的适应度。染色体代表一种城市的排列方式,
    % 适应度是根据城市之间的距离来计算的。
    % 代码首先根据染色体的基因值在Data中找到对应的城市位置,
    % 然后计算相邻城市之间的距离,并将这些距离存储在矩阵B中。
    % 最后,计算适应度值,即距离的倒数之和,并将适应度值存储在矩阵Y中。
    E                = func_evaluation(P,Data);
    [P, S]           = func_selection(P,E,Npop);
    Yavg(i)          = sum(S)/Npop;
    Ybest(i)         = sum(S)/Npop;
end

figure
plot(Yavg,'r'); 
hold on
plot(Ybest,'b'); 
xlabel('迭代次数')
ylabel('适应度收敛曲线')
grid on 


[V,I]    = min(Ybest);
opt_res  = P(1,:);
[x1, y1] = size(opt_res);

figure
plot(Data(:,2),Data(:,3),'go', 'MarkerSize',5,'LineWidth',2)
hold on 
for i=1:x
    text(Data(i,2)+0.25,Data(i,3)+0.25,num2str(i), 'FontSize', 12);
    hold on 
end
Data2 = zeros(size(Data));
for i=1:y1
    Data2(i,:) = Data(opt_res(i),:);
end
line(Data2(:,2),Data2(:,3),'LineStyle','-','LineWidth',2);
title('最优路线');
xlabel('X')
ylabel('Y')
12

4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是计算机科学和运筹学中的经典问题,其目标是寻找访问一系列城市并返回起始城市的最短可能路线。此问题属于NP-难问题,对于大规模的实例,精确的求解方法在计算上不可行。因此,启发式方法,特别是遗传算法(Genetic Algorithms, GA),在解决TSP问题上非常受欢迎。

4.1 遗传算法概述
遗传算法是一种模拟自然选择和遗传学机制的优化技术。它们通过模拟生物进化过程中的选择、交叉和变异操作来搜索问题的解空间。GA的主要优点是能够处理大量的参数,并有可能找到全局最优解,而不是仅仅陷入局部最优。

4.2 TSP问题描述
给定一个城市集合 (C = {c_1, c_2, ..., c_n}) 和每对城市 (c_i) 和 (c_j) 之间的距离 (d(c_i, c_j)),TSP的目标是找到访问每个城市一次并返回起始城市的最短路线。

我们可以表示一个TSP解为一个城市的排列 (\pi = (\pi_1, \pi_2, ..., \pi_n)),其中 (\pi_i) 是访问的第i个城市,且 (\pi_1 = \pi_n)(起始和结束于同一城市)。则该路线的总距离为:

(D(\pi) = \sum_{i=1}^{n-1} d(\pii, \pi{i+1}))

4.3 使用遗传算法解决TSP
编码:在GA中,每个解(在这里是一个TSP路线)都被编码为一个“染色体”。对于TSP,常用的编码方法是城市的排列。例如,一个染色体可以是 (2, 5, 1, 4, 3),表示从城市2开始,然后到5,1,4,最后回到2的路线。
初始化种群:随机生成一组初始解(染色体)作为起始种群。
适应度函数:用于评估每个染色体的“适应度”或质量。在TSP中,适应度函数通常是路线的总距离的倒数,因为我们希望最小化这个距离。
选择:选择操作是基于适应度来选择染色体以进行繁殖。常用的选择方法有轮盘赌选择、锦标赛选择等。 交叉:交叉操作模拟了生物繁殖中的基因重组。对于TSP,常用的交叉方法是部分映射交叉(PMX)和顺序交叉(OX)。以PMX为例,随机选择两个交叉点,然后交换两个父染色体之间的片段,并通过部分映射来修复任何重复的城市。
变异:模拟基因突变的过程,有助于维持种群的多样性。对于TSP的染色体编码,常见的变异方法有交换变异(随机交换两个城市的位置)和倒置变异(将染色体的一部分倒置)。
终止条件:算法迭代进行,直到满足终止条件(如达到最大迭代次数、达到预定的适应度水平或种群多样性降低到某一阈值)。
解码和结果:最后,最佳染色体被解码为TSP的解决方案,即访问城市的最佳顺序。

相关文章
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
27天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
205 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
131 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度