基于GA遗传优化的TSP问题最优路线规划matlab仿真

简介: 本项目使用遗传算法(GA)解决旅行商问题(TSP),目标是在访问一系列城市后返回起点的最短路径。TSP属于NP-难问题,启发式方法尤其GA在此类问题上表现出色。项目在MATLAB 2022a中实现,通过编码、初始化种群、适应度评估、选择、交叉与变异等步骤,最终展示适应度收敛曲线及最优路径。

1.程序功能描述
旅行商问题(Traveling Salesman Problem, TSP)是计算机科学和运筹学中的经典问题,其目标是寻找访问一系列城市并返回起始城市的最短可能路线。此问题属于NP-难问题,对于大规模的实例,精确的求解方法在计算上不可行。因此,启发式方法,特别是遗传算法(Genetic Algorithms, GA),在解决TSP问题上非常受欢迎。本课题中,使用遗传算法,实现TSP问题的求解。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

784b189adc6d306ae12752b1feb458e8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
743686388fa635088493f7bd09bfce02_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

%人口规模
Npop = 200;
%交叉所需的染色体对数
c    = 20;
%诱变所需的染色体数目
m    = 10;
%总代数
Iters= 4000;

%城市个数
NUM  = 30;
Data = [[1:NUM]',1000*rand(NUM,2)];

[x, y] = size(Data);
nc     = x;  
P      = func_initial(Npop,nc);

for i=1:Iters
    i
    % 交叉(single-point crossover)操作,用于遗传算法中的染色体交叉步骤。
    % 在每一次循环中,它随机选择一个父代染色体,并在随机选择的交叉点处将其切割,
    % 然后将切割下来的基因片段移动到染色体的末尾,从而生成一个新的子代染色体。
    P(Npop+1:Npop+c,:)     = func_crossover(P,c);
    % 实现的是染色体的突变操作。在遗传算法中,突变是增加种群多样性的重要步骤。
    % 对于每一个需要突变的染色体,函数随机选择两个基因位置,并交换这两个位置的基因值,从而实现染色体的突变。
    P(Npop+c+1:Npop+c+m,:) = func_mutation(P,m);
    % 一个种群中每个染色体的适应度。染色体代表一种城市的排列方式,
    % 适应度是根据城市之间的距离来计算的。
    % 代码首先根据染色体的基因值在Data中找到对应的城市位置,
    % 然后计算相邻城市之间的距离,并将这些距离存储在矩阵B中。
    % 最后,计算适应度值,即距离的倒数之和,并将适应度值存储在矩阵Y中。
    E                = func_evaluation(P,Data);
    [P, S]           = func_selection(P,E,Npop);
    Yavg(i)          = sum(S)/Npop;
    Ybest(i)         = sum(S)/Npop;
end

figure
plot(Yavg,'r'); 
hold on
plot(Ybest,'b'); 
xlabel('迭代次数')
ylabel('适应度收敛曲线')
grid on 


[V,I]    = min(Ybest);
opt_res  = P(1,:);
[x1, y1] = size(opt_res);

figure
plot(Data(:,2),Data(:,3),'go', 'MarkerSize',5,'LineWidth',2)
hold on 
for i=1:x
    text(Data(i,2)+0.25,Data(i,3)+0.25,num2str(i), 'FontSize', 12);
    hold on 
end
Data2 = zeros(size(Data));
for i=1:y1
    Data2(i,:) = Data(opt_res(i),:);
end
line(Data2(:,2),Data2(:,3),'LineStyle','-','LineWidth',2);
title('最优路线');
xlabel('X')
ylabel('Y')
12

4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是计算机科学和运筹学中的经典问题,其目标是寻找访问一系列城市并返回起始城市的最短可能路线。此问题属于NP-难问题,对于大规模的实例,精确的求解方法在计算上不可行。因此,启发式方法,特别是遗传算法(Genetic Algorithms, GA),在解决TSP问题上非常受欢迎。

4.1 遗传算法概述
遗传算法是一种模拟自然选择和遗传学机制的优化技术。它们通过模拟生物进化过程中的选择、交叉和变异操作来搜索问题的解空间。GA的主要优点是能够处理大量的参数,并有可能找到全局最优解,而不是仅仅陷入局部最优。

4.2 TSP问题描述
给定一个城市集合 (C = {c_1, c_2, ..., c_n}) 和每对城市 (c_i) 和 (c_j) 之间的距离 (d(c_i, c_j)),TSP的目标是找到访问每个城市一次并返回起始城市的最短路线。

我们可以表示一个TSP解为一个城市的排列 (\pi = (\pi_1, \pi_2, ..., \pi_n)),其中 (\pi_i) 是访问的第i个城市,且 (\pi_1 = \pi_n)(起始和结束于同一城市)。则该路线的总距离为:

(D(\pi) = \sum_{i=1}^{n-1} d(\pii, \pi{i+1}))

4.3 使用遗传算法解决TSP
编码:在GA中,每个解(在这里是一个TSP路线)都被编码为一个“染色体”。对于TSP,常用的编码方法是城市的排列。例如,一个染色体可以是 (2, 5, 1, 4, 3),表示从城市2开始,然后到5,1,4,最后回到2的路线。
初始化种群:随机生成一组初始解(染色体)作为起始种群。
适应度函数:用于评估每个染色体的“适应度”或质量。在TSP中,适应度函数通常是路线的总距离的倒数,因为我们希望最小化这个距离。
选择:选择操作是基于适应度来选择染色体以进行繁殖。常用的选择方法有轮盘赌选择、锦标赛选择等。 交叉:交叉操作模拟了生物繁殖中的基因重组。对于TSP,常用的交叉方法是部分映射交叉(PMX)和顺序交叉(OX)。以PMX为例,随机选择两个交叉点,然后交换两个父染色体之间的片段,并通过部分映射来修复任何重复的城市。
变异:模拟基因突变的过程,有助于维持种群的多样性。对于TSP的染色体编码,常见的变异方法有交换变异(随机交换两个城市的位置)和倒置变异(将染色体的一部分倒置)。
终止条件:算法迭代进行,直到满足终止条件(如达到最大迭代次数、达到预定的适应度水平或种群多样性降低到某一阈值)。
解码和结果:最后,最佳染色体被解码为TSP的解决方案,即访问城市的最佳顺序。

相关文章
|
4月前
|
数据可视化
基于MATLAB的OFDM调制发射与接收仿真
基于MATLAB的OFDM调制发射与接收仿真
|
3月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
249 0
|
3月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
3月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
4月前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
269 15
|
4月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
616 5
|
3月前
|
机器学习/深度学习 传感器 算法
基于GA-HIDMSPSO优化CNN-SVM分类预测的研究(Matlb代码实现)
基于GA-HIDMSPSO优化CNN-SVM分类预测的研究(Matlb代码实现)
121 0
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
4月前
|
机器学习/深度学习 边缘计算 算法
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
【无人机】无人机群在三维环境中的碰撞和静态避障仿真(Matlab代码实现)
243 0