借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据

环境部署

本次体验用到了模型在线服务PAI-EAS,所以在正式开始部署体验前,需要先开通服务。如果你是新用户,可以领取免费试用资源。如下:

在模型在线服务PAI-EAS面板,单击立即试用,如下:

点击前往PAI控制台。如下:

从开通服务的时候我们可以很清晰地看到PAI-EAS服务目前支持的地域有北京、上海、杭州、深圳、成都、河源。为了方便,这里就直接选择了杭州。如下:

由于本次体验不需要开通其他服务,所以组合服务这里我们不要勾选,以免产生不必要的费用。

首次开通需要授权,点击授权前往RAM访问控制。如下:

点击同意授权即可。如下:

完成授权后返回点击刷新,继续点击“确认开通并创建默认工作空间”。如下:

稍等片刻即可完成服务的开通。如下:

来到PAI控制台,点击左侧的工作空间列表,单击待操作的工作空间名称,进入对应工作空间内。如下:

在PAI EAS模型在线服务页面,单击部署服务。如下:

在选择部署方式面板,选择自定义部署,单击确定。如下:

在部署服务页面,自定义服务名称,选择镜像部署AI-Web应用,在PAI平台镜像列表中选择chat-llm-webui;镜像版本选择3.0,勾选协议,运行命令配置为:python webui/webui_server.py --port=8000 --model-path=Qwen/Qwen-7B-Chat。如下:

选择公共资源组,选择常规资源配置,如果你选择免费试用资源,则选择试用活动页签的ecs.gn7i-c8g1.2xlarge.limit实例规格。

如果此处使用个人账户资源,推荐选择GPU页签的ecs.gn7i-c8g1.2xlarge,或者选择GPU显存大于24GB规格的实例。

这里尤其要注意的是,本次部署体验参加免费试用抵扣的实例规格,只有如下三种,选择时需要甄别。

ecs.g6.xlarge.limit

ecs.gn6i-c8g1.2xlarge.limit

ecs.gn7i-c8g1.2xlarge.limit

完成如上配置后,点击部署。如下:

回到PAI控制台,在PAI-EAS服务处单击查看日志,可以看到部署时的日志信息。如下:

整个部署过程大约耗时3分钟,当服务状态为运行中时,表明完成部署。如下:

点击“查看Web应用”,即可开始体验了。如下:

如何利用LangChain来集成自己的业务数据,只需简单的上传并初始化即可。如下:

基于集成数据完成chat效率还是非常高的。如下:

基本上做到了秒解。这对于个人或企业知识库的构建帮助还是非常大的。

当然除了服务本身功能的实现外,基于PAI-EAS一键部署不但能带来更好的体验,而且对于服务的监控也是非常详细的。如下:

体验完成后一定要记得释放掉使用的资源,在推理服务页签,单击目标服务操作列下的删除,删除模型服务。如下:

体验总结

1、使用PAI-EAS一键部署ChatGLM和LangChain,大大简化了部署和集成的复杂度,用户无需过多配置即可快速部署ChatGLM模型。

2、LangChain提供了丰富的组件和灵活的配置方式,可以轻松地与外部数据进行交互,满足不同的应用场景需求。此外,LangChain框架的灵活性和高度抽象性使得集成外部数据变得相对简单,用户可以根据需求自定义模型的行为和输出。ChatGLM模型在集成LangChain后,能够结合外部数据生成更加准确和定制化的答案,显著提升了模型的应用效果。

3、ChatGLM模型在PAI-EAS的部署下表现出色,能够快速响应并生成高质量的回答。

4、值得好评的是通过选择免费试用资源或合理规划个人账户资源,可以在不产生过多费用的情况下,体验ChatGLM和LangChain的强大功能。

5、唯一的不足就是服务时常出现不可用,这可能跟使用的是公共资源有关,但好在每次恢复耗时并不长,弹性能力是真的好用。

综上,使用PAI-EAS一键部署ChatGLM,并通过LangChain集成外部数据,为开发人员提供了一个高效、灵活且成本效益高的解决方案。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
2月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
651 2
|
1月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
57 3
|
2月前
|
前端开发 JavaScript UED
探索Python Django中的WebSocket集成:为前后端分离应用添加实时通信功能
通过在Django项目中集成Channels和WebSocket,我们能够为前后端分离的应用添加实时通信功能,实现诸如在线聊天、实时数据更新等交互式场景。这不仅增强了应用的功能性,也提升了用户体验。随着实时Web应用的日益普及,掌握Django Channels和WebSocket的集成将为开发者开启新的可能性,推动Web应用的发展迈向更高层次的实时性和交互性。
104 1
|
2月前
|
Java Maven Docker
gitlab-ci 集成 k3s 部署spring boot 应用
gitlab-ci 集成 k3s 部署spring boot 应用
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
模型训练数据-MinerU一款Pdf转Markdown软件
MinerU是由上海人工智能实验室OpenDataLab团队开发的开源智能数据提取工具,专长于复杂PDF文档的高效解析与提取。它能够将含有图片、公式、表格等多模态内容的PDF文档转化为Markdown格式,同时支持从网页和电子书中提取内容,显著提升了AI语料准备的效率。MinerU具备高精度的PDF模型解析工具链,能自动识别乱码,保留文档结构,并将公式转换为LaTeX格式,广泛适用于学术、财务、法律等领域。
132 4
|
1月前
|
jenkins 测试技术 持续交付
探索自动化测试在持续集成中的应用与挑战
本文深入探讨了自动化测试在现代软件开发流程,特别是持续集成(CI)环境中的关键作用。通过分析自动化测试的优势、实施策略以及面临的主要挑战,旨在为开发团队提供实用的指导和建议。文章不仅概述了自动化测试的基本原理和最佳实践,还详细讨论了如何克服实施过程中遇到的技术难题和管理障碍,以实现更高效、更可靠的软件交付。
|
1月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
44 1
|
1月前
|
传感器 前端开发 Android开发
在 Flutter 开发中,插件开发与集成至关重要,它能扩展应用功能,满足复杂业务需求
在 Flutter 开发中,插件开发与集成至关重要,它能扩展应用功能,满足复杂业务需求。本文深入探讨了插件开发的基本概念、流程、集成方法、常见类型及开发实例,如相机插件的开发步骤,同时强调了版本兼容性、性能优化等注意事项,并展望了插件开发的未来趋势。
44 2
|
1月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
35 2

相关产品

  • 人工智能平台 PAI