借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据

环境部署

本次体验用到了模型在线服务PAI-EAS,所以在正式开始部署体验前,需要先开通服务。如果你是新用户,可以领取免费试用资源。如下:

在模型在线服务PAI-EAS面板,单击立即试用,如下:

点击前往PAI控制台。如下:

从开通服务的时候我们可以很清晰地看到PAI-EAS服务目前支持的地域有北京、上海、杭州、深圳、成都、河源。为了方便,这里就直接选择了杭州。如下:

由于本次体验不需要开通其他服务,所以组合服务这里我们不要勾选,以免产生不必要的费用。

首次开通需要授权,点击授权前往RAM访问控制。如下:

点击同意授权即可。如下:

完成授权后返回点击刷新,继续点击“确认开通并创建默认工作空间”。如下:

稍等片刻即可完成服务的开通。如下:

来到PAI控制台,点击左侧的工作空间列表,单击待操作的工作空间名称,进入对应工作空间内。如下:

在PAI EAS模型在线服务页面,单击部署服务。如下:

在选择部署方式面板,选择自定义部署,单击确定。如下:

在部署服务页面,自定义服务名称,选择镜像部署AI-Web应用,在PAI平台镜像列表中选择chat-llm-webui;镜像版本选择3.0,勾选协议,运行命令配置为:python webui/webui_server.py --port=8000 --model-path=Qwen/Qwen-7B-Chat。如下:

选择公共资源组,选择常规资源配置,如果你选择免费试用资源,则选择试用活动页签的ecs.gn7i-c8g1.2xlarge.limit实例规格。

如果此处使用个人账户资源,推荐选择GPU页签的ecs.gn7i-c8g1.2xlarge,或者选择GPU显存大于24GB规格的实例。

这里尤其要注意的是,本次部署体验参加免费试用抵扣的实例规格,只有如下三种,选择时需要甄别。

ecs.g6.xlarge.limit

ecs.gn6i-c8g1.2xlarge.limit

ecs.gn7i-c8g1.2xlarge.limit

完成如上配置后,点击部署。如下:

回到PAI控制台,在PAI-EAS服务处单击查看日志,可以看到部署时的日志信息。如下:

整个部署过程大约耗时3分钟,当服务状态为运行中时,表明完成部署。如下:

点击“查看Web应用”,即可开始体验了。如下:

如何利用LangChain来集成自己的业务数据,只需简单的上传并初始化即可。如下:

基于集成数据完成chat效率还是非常高的。如下:

基本上做到了秒解。这对于个人或企业知识库的构建帮助还是非常大的。

当然除了服务本身功能的实现外,基于PAI-EAS一键部署不但能带来更好的体验,而且对于服务的监控也是非常详细的。如下:

体验完成后一定要记得释放掉使用的资源,在推理服务页签,单击目标服务操作列下的删除,删除模型服务。如下:

体验总结

1、使用PAI-EAS一键部署ChatGLM和LangChain,大大简化了部署和集成的复杂度,用户无需过多配置即可快速部署ChatGLM模型。

2、LangChain提供了丰富的组件和灵活的配置方式,可以轻松地与外部数据进行交互,满足不同的应用场景需求。此外,LangChain框架的灵活性和高度抽象性使得集成外部数据变得相对简单,用户可以根据需求自定义模型的行为和输出。ChatGLM模型在集成LangChain后,能够结合外部数据生成更加准确和定制化的答案,显著提升了模型的应用效果。

3、ChatGLM模型在PAI-EAS的部署下表现出色,能够快速响应并生成高质量的回答。

4、值得好评的是通过选择免费试用资源或合理规划个人账户资源,可以在不产生过多费用的情况下,体验ChatGLM和LangChain的强大功能。

5、唯一的不足就是服务时常出现不可用,这可能跟使用的是公共资源有关,但好在每次恢复耗时并不长,弹性能力是真的好用。

综上,使用PAI-EAS一键部署ChatGLM,并通过LangChain集成外部数据,为开发人员提供了一个高效、灵活且成本效益高的解决方案。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
4天前
|
机器学习/深度学习 算法
【机器学习】迅速了解什么是集成学习
【机器学习】迅速了解什么是集成学习
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
如何让你的Uno Platform应用秒变AI大神?从零开始,轻松集成机器学习功能,让应用智能起来,用户惊呼太神奇!
【9月更文挑战第8天】随着技术的发展,人工智能与机器学习已融入日常生活,特别是在移动应用开发中。Uno Platform 是一个强大的框架,支持使用 C# 和 XAML 开发跨平台应用(涵盖 Windows、macOS、iOS、Android 和 Web)。本文探讨如何在 Uno Platform 中集成机器学习功能,通过示例代码展示从模型选择、训练到应用集成的全过程,并介绍如何利用 Onnx Runtime 等库实现在 Uno 平台上的模型运行,最终提升应用智能化水平和用户体验。
36 1
|
1月前
|
机器学习/深度学习 存储 数据采集
Elasticsearch 与机器学习的集成
【9月更文第3天】Elasticsearch 不仅仅是一个强大的分布式搜索和分析引擎,它还是一个完整的数据平台,通过与 Kibana、Logstash 等工具结合使用,能够提供从数据采集、存储到分析的一站式解决方案。特别是,Elasticsearch 集成了机器学习(ML)功能,使得在实时数据流中进行异常检测和趋势预测成为可能。本文将详细介绍如何利用 Elasticsearch 的 ML 功能来检测异常行为或预测趋势。
36 4
|
2月前
|
机器学习/深度学习 存储 前端开发
实战揭秘:如何借助TensorFlow.js的强大力量,轻松将高效能的机器学习模型无缝集成到Web浏览器中,从而打造智能化的前端应用并优化用户体验
【8月更文挑战第31天】将机器学习模型集成到Web应用中,可让用户在浏览器内体验智能化功能。TensorFlow.js作为在客户端浏览器中运行的库,提供了强大支持。本文通过问答形式详细介绍如何使用TensorFlow.js将机器学习模型带入Web浏览器,并通过具体示例代码展示最佳实践。首先,需在HTML文件中引入TensorFlow.js库;接着,可通过加载预训练模型如MobileNet实现图像分类;然后,编写代码处理图像识别并显示结果;此外,还介绍了如何训练自定义模型及优化模型性能的方法,包括模型量化、剪枝和压缩等。
38 1
|
2月前
|
Java 测试技术 容器
从零到英雄:Struts 2 最佳实践——你的Web应用开发超级变身指南!
【8月更文挑战第31天】《Struts 2 最佳实践:从设计到部署的全流程指南》深入介绍如何利用 Struts 2 框架从项目设计到部署的全流程。从初始化配置到采用 MVC 设计模式,再到性能优化与测试,本书详细讲解了如何构建高效、稳定的 Web 应用。通过最佳实践和代码示例,帮助读者掌握 Struts 2 的核心功能,并确保应用的安全性和可维护性。无论是在项目初期还是后期运维,本书都是不可或缺的参考指南。
38 0
|
2月前
|
API UED 开发者
如何在Uno Platform中轻松实现流畅动画效果——从基础到优化,全方位打造用户友好的动态交互体验!
【8月更文挑战第31天】在开发跨平台应用时,确保用户界面流畅且具吸引力至关重要。Uno Platform 作为多端统一的开发框架,不仅支持跨系统应用开发,还能通过优化实现流畅动画,增强用户体验。本文探讨了Uno Platform中实现流畅动画的多个方面,包括动画基础、性能优化、实践技巧及问题排查,帮助开发者掌握具体优化策略,提升应用质量与用户满意度。通过合理利用故事板、减少布局复杂性、使用硬件加速等技术,结合异步方法与预设缓存技巧,开发者能够创建美观且流畅的动画效果。
68 0
|
2月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
49 0
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
全面解析TensorFlow Lite:从模型转换到Android应用集成,教你如何在移动设备上轻松部署轻量级机器学习模型,实现高效本地推理
【8月更文挑战第31天】本文通过技术综述介绍了如何使用TensorFlow Lite将机器学习模型部署至移动设备。从创建、训练模型开始,详细演示了模型向TensorFlow Lite格式的转换过程,并指导如何在Android应用中集成该模型以实现预测功能,突显了TensorFlow Lite在资源受限环境中的优势及灵活性。
105 0
|
2月前
|
SQL 存储 数据管理
掌握SQL Server Integration Services (SSIS)精髓:从零开始构建自动化数据提取、转换与加载(ETL)流程,实现高效数据迁移与集成——轻松上手SSIS打造企业级数据管理利器
【8月更文挑战第31天】SQL Server Integration Services (SSIS) 是 Microsoft 提供的企业级数据集成平台,用于高效完成数据提取、转换和加载(ETL)任务。本文通过简单示例介绍 SSIS 的基本使用方法,包括创建数据包、配置数据源与目标以及自动化执行流程。首先确保安装了 SQL Server Data Tools (SSDT),然后在 Visual Studio 中创建新的 SSIS 项目,通过添加控制流和数据流组件,实现从 CSV 文件到 SQL Server 数据库的数据迁移。
69 0
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
NumPy 与机器学习框架的集成
【8月更文第30天】NumPy 是 Python 中用于科学计算的核心库之一,它提供了高效的多维数组对象,以及用于操作数组的大量函数。NumPy 的高效性和灵活性使其成为许多机器学习框架的基础。本文将探讨 NumPy 如何与 TensorFlow 和 PyTorch 等流行机器学习框架协同工作,并通过具体的代码示例来展示它们之间的交互。
27 0

相关产品

  • 人工智能平台 PAI