AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

简介: AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

一、引言

5月6日私募基金幻方发布DeepSeek-V2,千亿级模型,每百万Tokens仅需1元-2元。5月15日,字节发布白菜价的豆包大模型,5月21日阿里、百度相机大幅下调甚至免费开放自家商用模型接口,大模型价格战正式打响。而被誉为大模型价格屠夫的“DeepSeek-V2”到底是怎么个事儿,是否可以进行训练和推理,今天我们来展开讲一讲。

二、模型简介

2.1 DeepSeek V2模型概述

DeepSeek V2(Moe)是一个基于专家网络(MoE)的大语言模型,是DeepSeek LLM(dense)的升级版本。

  • 主要特点:训练经济、推理高效。
  • 模型尺寸:236B,其中激活参数21B。
  • 上下文长度:128K
  • 相较于他的前一代DeepSeek LLM(67B),节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提升至5.76倍。

  • 采用8.1万亿个token的多样化高质量预料预训练,在进行全面的预训练之后,进行监督微调(SFT)以及强化学习(RL),充分发挥模型性能。
  • 官方于5月16日发布了可消费级显卡部署的lite版模型:DeepSeek-V2-Lite,总参数16B,激活函数2.4B,上下文长度32K,降低用户私有化部署成本。

  • 中文评测集效果对比(官方发布,仅供参考):  

  •  各大厂商价格战之前的商用接口价格对比(2024.5.6)

就是因为这么一张价格对比表,开启了国产大模型价格之战,“砸我饭碗,都别吃了!”

2.2 DeepSeek V2模型架构

DeepSeek-V2针对attention机制和MoE网络进行创新,保证经济的训练和高效的推理:

  • 对于注意力,设计了MLA(多头潜在注意力),它利用低秩键值联合压缩来消除推理时键值缓存的瓶颈,从而支持高效的推理。
  • 对于前馈网络(FFN),采用 DeepSeekMoE 架构,这是一种高性能 MoE 架构,能够以更低的成本训练更强大的模型。

模型结构配置(configuration_deepseek.py),这里对涉及网络结构的每个参数进行中文说明。

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
 
logger = logging.get_logger(__name__)
 
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DeepseekV2Config(PretrainedConfig):
 
    model_type = "deepseek_v2"
    keys_to_ignore_at_inference = ["past_key_values"]
 
    def __init__(
        self,
        vocab_size=102400,#深度模型词汇量,默认102400
        hidden_size=4096,#隐层的维度,默认4096
        intermediate_size=11008,#MLP的维度,默认11008
        moe_intermediate_size = 1407,#MOE的维度,默认1407
        num_hidden_layers=30,#在transformer decoder中隐层的数量,默认30
        num_attention_heads=32,#在transformer decoder中每个多头注意力层的头数,默认32
        num_key_value_heads=32,
        #用于实现分组查询注意力的 key_value 头的数量
        #如果`num_key_value_heads=num_attention_heads`,模型将使用多头注意力(MHA),
        #如果`num_key_value_heads=1 时,模型将使用多查询注意 (MQA),否则将使用 GQA。
        #当将多头检查点转换为 GQA 检查点,应构造每个组键和值头。意思是meanpooling该组内的所有original heads
        #详细说明见(https://arxiv.org/pdf/2305.13245.pdf)
        #默认num_key_value_heads=num_attention_heads
        n_shared_experts = None,#moe共享专家数,为None代表dense model稠密模型
        n_routed_experts = None,#moe路由专家数,为None代表dense model稠密模型
        ep_size = 1,
        routed_scaling_factor = 1.0,#路由专家的缩放因子,
        kv_lora_rank = 512,
        q_lora_rank = 1536,
        qk_rope_head_dim = 64,
        v_head_dim = 128,
        qk_nope_head_dim = 128,
        topk_method = 'gready',#moe网络中路由门控的topk选择方法,默认为贪心算法
        n_group = None,#路由专家的组数,默认为None不分组
        topk_group = None,#每个token选中的组数(对于每个 token,确保选中的专家仅在 `topk_group` 组内)
        num_experts_per_tok = None,#选定专家的数量,无表示密集模型
        moe_layer_freq = 1,#MoE 层的频率:每“moe_layer_freq - 1”密集层有一个专家层
        first_k_dense_replace = 0,#浅层中的密集层数(embed->dense->dense->...->dense->moe->moe...->lm_head)。
        norm_topk_prob = False,#是否标准化已路由专家的权重。
        scoring_func = 'softmax',#计算专家权重的方法,默认softmax
        aux_loss_alpha = 0.001,#辅助损失系数。
        seq_aux = True,#是否计算每个单独样本的辅助损失。
        hidden_act="silu",#decoder中非线性激活函数,默认为silu
        max_position_embeddings=2048,#该模型可能用到的最大序列长度,默认为2048,这个参数直接影响模型上下文长度。如果太短,在应用中设置较长的system prompt会让对话被截断。
        initializer_range=0.02,#用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差
        rms_norm_eps=1e-6,#均方根归一化层使用的 epsilon,用于处理浮点数比较时的误差或精度问题,通常是个很小的值。
        use_cache=True,模型是否应该返回最后的key value注意力的值(并非所有模型都使用)。仅当 `config.is_decoder=True` 才有意义
        pad_token_id=None,#填充的token id
        bos_token_id=100000,#token流开始的id,默认为100000
        eos_token_id=100001,#token流结束的id,默认为100001
        pretraining_tp=1,#实验性功能。预训练期间使用的张量并行度等级。此值是确保预训练结果的精确再现性是必要的。
        tie_word_embeddings=False,#是否绑定词嵌入
        rope_theta=10000.0,#RoPE 嵌入的基期,默认为10000
        rope_scaling=None,#包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为`{"type": 策略名称,"factor": 缩放因子}`。使用此标志时,不要更新`max_position_embeddings` 达到预期的新最大值。
        attention_bias=False,#在自注意力期间是否在查询、键、值和输出投影层中使用偏差,默认False
        attention_dropout=0.0,#注意力概率的丢失率。
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.moe_intermediate_size = moe_intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.n_shared_experts = n_shared_experts
        self.n_routed_experts = n_routed_experts
        self.ep_size = ep_size
        self.routed_scaling_factor = routed_scaling_factor
        self.kv_lora_rank = kv_lora_rank
        self.q_lora_rank = q_lora_rank
        self.qk_rope_head_dim = qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.qk_nope_head_dim = qk_nope_head_dim
        self.topk_method = topk_method
        self.n_group = n_group
        self.topk_group = topk_group
        self.num_experts_per_tok = num_experts_per_tok
        self.moe_layer_freq = moe_layer_freq
        self.first_k_dense_replace = first_k_dense_replace
        self.norm_topk_prob = norm_topk_prob
        self.scoring_func = scoring_func
        self.aux_loss_alpha = aux_loss_alpha
        self.seq_aux = seq_aux
        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads
 
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.pretraining_tp = pretraining_tp
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
 
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
  • vocab_size=102400,#词库大小,默认102400,作为参考qwen-72B为152064
  • hidden_size=4096,#隐层的维度,默认4096
  • intermediate_size=11008,#MLP的维度,默认11008
  • moe_intermediate_size = 1407,#MOE的维度,默认1407
  • num_hidden_layers=30,#在transformer decoder中隐层的数量,默认30
  • num_attention_heads=32,#在transformer decoder中每个多头注意力层的头数,默认32,作为参考,qwen-72B为80,baichuan2-13B为40
  • num_key_value_heads=32,
  • #用于实现分组查询注意力的 key_value 头的数量
  • #如果`num_key_value_heads=num_attention_heads`,模型将使用多头注意力(MHA),
  • #如果`num_key_value_heads=1 时,模型将使用多查询注意 (MQA),否则将使用 GQA。
  • #当将多头检查点转换为 GQA 检查点,应构造每个组键和值头。意思是meanpooling该组内的所有original heads
  • #详细说明见(https://arxiv.org/pdf/2305.13245.pdf)
  • #默认num_key_value_heads=num_attention_heads
  • n_shared_experts = None,#moe共享专家数,为None代表dense model稠密模型
  • n_routed_experts = None,#moe路由专家数,为None代表dense model稠密模型
  • ep_size = 1,
  • routed_scaling_factor = 1.0,#路由专家的缩放因子,
  • kv_lora_rank = 512,kv lora矩阵的秩,默认为512
  • q_lora_rank = 1536,q lora矩阵的秩,默认为1536
  • qk_rope_head_dim = 64,qk rope矩阵头维度,默认为64
  • v_head_dim = 128,v矩阵头维度,默认为128
  • qk_nope_head_dim = 128,qk nope矩阵头维度,默认为128
  • topk_method = 'gready',#moe网络中路由门控的topk选择方法,默认为贪心算法
  • n_group = None,#路由专家的组数,默认为None不分组
  • topk_group = None,#每个token选中的组数(对于每个 token,确保选中的专家仅在 `topk_group` 组内)
  • num_experts_per_tok = None,#选定专家的数量,无表示密集模型
  • moe_layer_freq = 1,#MoE 层的频率:每“moe_layer_freq - 1”密集层有一个专家层
  • first_k_dense_replace = 0,#浅层中的密集层数(embed->dense->dense->...->dense->moe->moe...->lm_head)。
  • norm_topk_prob = False,#是否标准化已路由专家的权重。
  • scoring_func = 'softmax',#计算专家权重的方法,默认softmax
  • aux_loss_alpha = 0.001,#辅助损失系数。
  • seq_aux = True,#是否计算每个单独样本的辅助损失。
  • hidden_act="silu",#decoder中非线性激活函数,默认为silu
  • max_position_embeddings=2048,#该模型可能用到的最大序列长度,默认为2048,这个参数直接影响模型上下文长度。如果太短,在应用中设置较长的system prompt会让对话被截断。
  • initializer_range=0.02,#用于初始化所有权重矩阵的 truncated_normal_initializer 的标准差
  • rms_norm_eps=1e-6,#均方根归一化层使用的 epsilon,用于处理浮点数比较时的误差或精度问题,通常是个很小的值。
  • use_cache=True,模型是否应该返回最后的key value注意力的值(并非所有模型都使用)。仅当 `config.is_decoder=True` 才有意义
  • pad_token_id=None,#填充的token id
  • bos_token_id=100000,#token流开始的id,默认为100000
  • eos_token_id=100001,#token流结束的id,默认为100001
  • pretraining_tp=1,#实验性功能。预训练期间使用的张量并行度等级。此值是确保预训练结果的精确再现性是必要的。
  • tie_word_embeddings=False,#是否绑定词嵌入
  • rope_theta=10000.0,#ROPE旋转位置编码里theta的空间,qwen-72B为1000000。ROPE是一种位置编码算法,通过优化的矩阵乘法方式为Q/K引入位置信息,使得token能够在Attention计算中感知到相对位置信息。
  • rope_scaling=None,#包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为`{"type": 策略名称,"factor": 缩放因子}`。使用此标志时,不要更新`max_position_embeddings` 达到预期的新最大值。
  • attention_bias=False,#在自注意力期间是否在查询、键、值和输出投影层中使用偏差,默认False
  • attention_dropout=0.0,#注意力概率的丢失率。

Tips:

之前在做深度学习推荐系统的时候,也经常接触到attention机制和MoE专家网络这两个模型网络,采用attention机制学习item或user序列的潜在关系,采用MoE专家网络做推荐系统中多场景/多目标网络的主模型,较为知名的有MMoE网络和PLE网络,通过共享多个专家网络,提升模型的多场景/多目标的关联学习能力。

三、训练与推理

3.1 DeepSeek V2模型训练

由于机器资源限制,这里基于QLoRA指令微调(SFT)DeepSeek V2的lite版(DeepSeek-V2-Lite-Chat),使用之前文章介绍的LLaMA-Factory框架。

国内网络环境下LLaMA-Factory部署:AI智能体研发之路-模型训练篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用_llama训练框架-CSDN博客

SFT训练启动代码:

CUDA_VISIBLE_DEVICES=1 llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path deepseek-ai/deepseek-moe-16b-chat \
    --finetuning_type lora \
    --quantization_bit 4 \
    --template deepseek \
    --flash_attn auto \
    --dataset_dir data \
    --dataset oaast_sft_zh \
    --cutoff_len 4096 \
    --learning_rate 5e-05 \
    --num_train_epochs 5.0 \
    --max_samples 100000 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 5 \
    --save_steps 100 \
    --warmup_steps 0 \
    --optim adamw_torch \
    --packing False \
    --report_to none \
    --output_dir saves/DeepSeek-MoE-16B-Chat/lora/train_2024-05-23-deepseek-v2 \
    --fp16 True \
    --lora_rank 16 \
    --lora_alpha 16 \
    --lora_dropout 0 \
    --lora_target q_proj,v_proj \
    --plot_loss True

其中:

  • quantization_bit = 4 ,int4量化,sft根据惯例fp16训练大概需要模型尺寸*2的GPU,int4需要模型尺寸*0.75的GPU,这里是16B,int4大概需要16*0.75=12G的GPU资源,如果fp16需要32G,对于V100显卡,单卡32G基本很难启动。
  • template = deepseek,template采用deepseek的,LLaMA Factory框架针对当下国内外主流模型都进行了template适配,训练和推理记得设置。
  • cutoff_len = 4096,上下文长度这里先设置4096,对于agent开发,特别是较长的system prompt,这里一定要尽量大,至少要4096。
  • per_device_train_batch_size = 2,每个设备训练的batich size,这里设置为2,不要太大
  • gradient_accumulation_steps = 8,

启动后,webui、docker logs或者save目录中的running_logs日志文件可以查看日志状态。

deepseek v2的SFT微调训练启动后要加载很久,需要确保服务器资源充足,并且要有足够的耐心。

对于以上参数,5轮迭代需要7小时12分钟,耐心等待叭。

训练完毕后,可以看到loss明显收敛,各位可以通过调整自己的数据样本集训练私有化模型。

3.2 DeepSeek V2模型推理

这里采用LLaMA Factory WebUI的chat部分进行模型推理测试,由于资源限制智能采用int4量化后进行推理测试,大概占用了12G显存。框架支持RoPE插值方法,可以配置线性插值和动态插值,以及支持flashattn2加速和unsloth加速。

从对话效果来看,int4的模型还是存在一定幻觉,比如问“你支持工具调用嘛”,模型回答“支持工具调用,但不具备调用工具的能力”。逻辑上产生错误。

但在个人实际工作中,官方完整版的deepseek-v2-chat(236B)还是非常好用的,对于agent的开发,回复效果上强于gpt3.5,回复速度上快于gpt4.0。接入dify平台上直接就可以使用,由于采用OpenAI兼容的API规范,配置和使用过程都很流畅。最重要的是,真便宜!测试用了6万token才花费了0.07元!

如何部署Dify智能体开发平台可参考之前的文章:AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署_dify 接入 天气预报

四、总结

本文首先针对deepseek-v2-chat这个大模型价格屠夫的模型特点和技术架构进行介绍,之后以LLaMA-factory为训练和推理框架,进行SFT微调训练和推理测试。

deepseek-v2-chat巧妙的将attention注意力机制和MoE网络架构与大模型相结合,通过模型算法与架构的升级,提升了推理和训练效率,最终呈现的就是成本的优化和商业市场价值的转化。是一个典型的通过技术创新直接创造商业价值的案例。respect。

如果认为文章现在或未来可以帮助到你,辛苦关注、点赞、收藏噢,您的鼓励是我持续创作的动力!

目录
相关文章
|
2天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
4天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
55 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
14天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
75 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
14天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
65 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
10天前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
38 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
16天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
57 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
16天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
56 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
2天前
|
人工智能 Serverless 视频直播
活动实践 | AI智能体实时语音互动
AI智能体实时语音互动方案提供端到端的实时音频交互,用户通过终端SDK与云端AI智能体进行音频通话。AI智能体接收音频输入,依据预定义工作流处理并生成响应,通过ARTC网络推送结果。该方案支持灵活编排AI组件如语音转文字、大语言模型等,确保高可用、低延迟的通信体验。用户可轻松创建和管理智能体及实时工作流,实现高效对话,并可通过示例网站体验功能。
|
15天前
|
人工智能 搜索推荐 安全
数百名研发人员用通义灵码,33%新增代码由AI生成,信也科技研发模式焕新升级
目前,信也科技数百名研发人员正在使用通义灵码,周活跃用户占比70%,新增代码中有33%由通义灵码编写,整体研发效率提升了11%,真正实现了数百研发人员开发效能的全面提升。
|
1天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。