Baichuan-M1-14B:AI 助力医疗推理,为患者提供专业的建议!百川智能开源业内首个医疗增强大模型,普及医学的新渠道!

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: Baichuan-M1-14B 是百川智能推出的首个开源医疗增强大模型,专为医疗场景优化,支持多语言、快速推理,具备强大的医疗推理能力和通用能力。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 医疗推理能力:Baichuan-M1-14B 在医疗领域表现出色,能够处理复杂的医疗问题,提供精准的医学推理和建议。
  2. 多语言支持:模型支持中英双语,能够处理多语言的医疗数据,适用于全球医疗场景。
  3. 开源可商用:Baichuan-M1-14B 是开源模型,支持低成本部署和多语言应用,推动医疗 AI 生态的建设。

正文(附运行示例)

Baichuan-M1-14B 是什么

Baichuan-M1-14B

Baichuan-M1-14B 是百川智能推出的行业首个开源医疗增强大模型,专为医疗场景优化,同时具备强大的通用能力。该模型基于 20 万亿 token 的高质量医疗与通用数据训练,涵盖 20 多个医疗科室的细粒度专业知识。在医疗推理和知识问答方面表现出色,性能可达到比自身参数量大五倍的模型水平。

Baichuan-M1-14B 的核心优势在于创新的模型结构和训练方法。引入了短卷积注意力机制、滑动窗口注意力机制和优化位置编码震荡等技术,提升了上下文理解和长序列任务的表现。模型采用多阶段课程学习和对齐优化方法,通过强化学习优化生成质量和逻辑推理能力。

Baichuan-M1-14B 的主要功能

Baichuan-M1-14B

  • 强大的医疗推理能力:Baichuan-M1-14B 在医疗领域表现出色,能够处理复杂的医疗问题,提供精准的医学推理和建议。
  • 多语言支持:模型支持中英双语,能够处理多语言的医疗数据,适用于全球医疗场景。
  • 开源可商用:Baichuan-M1-14B 是开源模型,支持低成本部署和多语言应用,推动医疗 AI 生态的建设。
  • 医疗循证模式:模型解锁了“医疗循证模式”,能通过多层级证据分级体系,对不同权威等级的证据进行分析与整合,提供可靠的医疗推理。
  • 多领域推理能力:Baichuan-M1-14B 在语言推理、视觉推理和搜索推理等多个领域展现了全面的推理能力。

Baichuan-M1-14B 的技术原理

Baichuan-M1-14B

  • 数据收集与处理:模型训练基于 20 万亿 token 的高质量医疗与通用数据,涵盖 20+ 医疗科室,数据按医疗科室、内容和价值进行分类,确保数据分布均衡。
  • 创新模型结构:引入短卷积注意力机制、滑动窗口注意力机制和优化位置编码震荡等技术,提升上下文理解和长序列任务的表现。
  • 多阶段训练方法:通过通识能力提升、医疗基础知识提升和医疗进阶知识提升三个阶段,逐步优化模型的通用能力与医疗领域能力。
  • 强化学习优化:采用 ELO、TDPO 和 PPO 等强化学习技术,优化生成质量和逻辑推理能力。

如何运行 Baichuan-M1-14B

1. 使用 Hugging Face Transformers 加载模型

以下代码展示了如何使用 Baichuan-M1-14B-Instruct 模型进行推理:

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# 1. 加载预训练模型和分词器
model_name = "baichuan-inc/Baichuan-M1-14B-Instruct"  
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()

# 2. 输入提示文本
prompt = "May I ask you some questions about medical knowledge?"

# 3. 编码输入文本
messages = [
    {
   "role": "system", "content": "You are a helpful assistant."},
    {
   "role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# 4. 生成文本
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]

# 5. 解码生成的文本
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

# 6. 输出结果
print("Generated text:")
print(response)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
13天前
|
人工智能 运维 架构师
Serverless + AI 让应用开发更简单,加速应用智能化
Serverless + AI 让应用开发更简单,加速应用智能化
|
14天前
|
人工智能 自然语言处理 算法
阿里云「AI实时互动」正式上线,体验“超拟人”智能互动
阿里云「AI实时互动」正式上线,体验“超拟人”智能互动
|
15天前
|
人工智能 自然语言处理 关系型数据库
DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
|
14天前
|
人工智能 搜索推荐 vr&ar
让教育更智能:HarmonyOS助力AI类目标签革新教育行业
在科技飞速发展的当下,教育行业正经历深刻变革,智能化转型成为提升教育质量与效率的关键。AI类目标签技术脱颖而出,通过分析学生多维度数据生成个性化学习标签,助力因材施教;智能管理教学资源,提高备课效率。HarmonyOS NEXT API 12及以上版本的分布式能力和强大的数据安全机制,为多设备协同学习和数据保护提供了有力支持。开发者可利用鸿蒙生态构建创新教育应用,推动教育智能化发展。
|
15天前
|
人工智能 自然语言处理 机器人
对话阿里云CIO蒋林泉:AI时代,企业如何做好智能化系统建设?
对话阿里云CIO蒋林泉:AI时代,企业如何做好智能化系统建设?
|
18天前
|
人工智能 Java API
Java也能快速搭建AI应用?一文带你玩转Spring AI可落地性
Java语言凭借其成熟的生态与解决方案,特别是通过 Spring AI 框架,正迅速成为 AI 应用开发的新选择。本文将探讨如何利用 Spring AI Alibaba 构建在线聊天 AI 应用,并实现对其性能的全面可观测性。
|
13天前
|
人工智能 弹性计算 Ubuntu
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
767 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
|
6天前
|
人工智能 前端开发 JavaScript
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
90 2
|
17天前
|
人工智能 边缘计算 运维
容器化浪潮下的AI赋能:智能化运维与创新应用
近年来,容器技术以其轻量、高效、可移植的特性成为云原生时代的基石,推动应用开发和部署方式革新。随着容器化应用规模扩大,传统运维手段逐渐力不从心。AI技术的引入为容器化生态带来新活力,实现智能监控、自动化故障诊断与修复及智能资源调度,提升运维效率和可靠性。同时,AI驱动容器化创新应用,如模型训练、边缘计算和Serverless AI服务,带来更多可能性。未来,AI与容器技术的融合将更加紧密,推动更智能、高效的运维平台和丰富的创新应用场景,助力数字化转型。
|
5天前
|
人工智能 Kubernetes 安全
积极拥抱AI,F5携手NVIDIA赋能加速AI应用交付
积极拥抱AI,F5携手NVIDIA赋能加速AI应用交付
21 4

热门文章

最新文章