【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】

简介: 【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】

一、设计目的

使用python读取excel数据表,分析和可视化一个国家或地区人口数据的多个重要方面。具体来说,它旨在通过四种不同的图表类型来展示数据,以便更全面地理解人口结构和动态变化。这些图表分别是:


  1. 柱状图:年末总人口变化 - 该图显示了不同年份的总人口数,用于观察人口总量随时间的增减趋势,以评估人口增长或减少的速度和规模。


  1. 饼状图:男女人口比例 - 通过展示最新年份的男性与女性人口比例,该图提供了性别分布的快照,这对于评估性别比平衡与否至关重要。


  1. 线形图:城镇和乡村人口变化 - 该图比较了城镇人口和乡村人口在不同年份的变化情况,通过这种比较可以理解城镇化进程的速度和农村地区的人口减少情况。


  1. 散点图:城市人口与年末总人口关系 - 通过展示城镇和乡村人口与总人口之间的关系,该图旨在   探讨人口分布的模式,特别是城市化程度与总人口规模的关系。


综合分析有助于政策制定者、研究者和公众更好地了解人口的基本动态,为政策制定和规划提供数据支持。同时,通过合理的可视化展示,可以使信息更容易被理解和传达,促进更有效的沟通和决策过程。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈


二、数据分析可视化

2.1 分析年末总人口的变化情况

2.2 分析年末男女人口比例

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

2.3 分析年末城镇和乡村人口随时间的变化趋势

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

2.4 分析年末年末总人口与城市人口之间的关系


三、代码分析

代码主要由几个模块组成,每个模块都有特定的功能,以下是各个模块的详细分析:

1. 导入模块和设置

import pandas as pd
import matplotlib.pyplot as plt


  • 导入模块: pandas 用于数据处理和分析,尤其擅长处理表格数据;matplotlib.pyplot 用于数据的可视化,提供了一个类似 MATLAB 的绘图框架。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

plt.rcParams['font.sans-serif'] = ['SimHei']
  • 设置中文显示: 为了在图表中正确显示中文,这行代码指定了使用 SimHei 字体,这是一种常用的中文黑体。

2. 读取数据

data = pd.read_excel('人口.xls', header=2)
  • 读取Excel文件: 这行代码使用 pandasread_excel 函数从 人口.xls 文件读取数据,header=2 表示数据的标题行是第三行(从0开始计数)。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

3. 数据提取

years = data.columns[1:]
  • 提取年份列: 这行代码获取数据中除了第一列之外的所有列,这些列代表了不同的年份,这对于后续的时间序列分析至关重要。

4. 绘制图形

4.1 设置画布和子图
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
  • 设置画布和子图: subplots 创建一个图形窗口和一组子图,这里创建了一个 2x2 的子图数组,每个子图都可以单独绘制不同的图表。
4.2 柱状图 - 年末总人口变化
axs[0, 0].bar(years, data.loc[0, years], color='blue')
axs[0, 0].set_title('年末总人口变化(周玉洁)')
axs[0, 0].set_ylabel('总人口(万人)')

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

  • 绘制柱状图: 显示了每个年份的总人口数,用于观察人口随时间的变化趋势。
  • 设置标题和标签: 包括标题和y轴标签,以及x轴标签的旋转,以便更好地显示年份信息。
4.3 饼状图 - 男女人口比例
axs[0, 1].pie(data.loc[1:2, '2022年'], labels=gender_labels, autopct='%1.1f%%', colors=['lightblue', 'lightcoral'])
axs[0, 1].set_title('男女人口比例(周玉洁)')
  • 绘制饼状图: 展示2022年的男性和女性人口比例。
  • 设置颜色和标签: 使用自定义颜色和百分比显示。
4.4 主线图 - 城镇人口和乡村人口变化
axs[1, 0].plot(years, data.loc[3, years], marker='o', label='城镇人口', color='green')
axs[1, 0].plot(years, data.loc[4, years], marker='s', label='乡村人口', color='orange')
axs[1, 0].set_title('城镇和乡村人口变化(周玉洁)')
# 略.....
  • 绘制主线图: 显示城镇和乡村人口随时间的变化。
  • 添加图例和标签: 标记不同的数据系列,并添加图例。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

4.5 散点图 - 城市人口与年末总人口关系
axs[1, 1].scatter(data.loc[0, years], data.loc[3, years], c='red', marker='^', label='城镇人口')
axs[1, 1].scatter(data.loc[0, years], data.loc[4, years], c='blue', marker='o', label='乡村人口')
axs[1, 1].set_title('城市人口与年末总人口关系(周玉洁)')
axs[1, 1].set_xlabel('年末总人口(万人)')
axs[1, 1].set_ylabel('城市人口(万人)')
axs[1, 1].legend()
  • 绘制散点图: 探讨城镇和乡村人口与总人口的关系。
  • 设置标签和图例: 详细标记坐标轴,并说明数据点代表的意义。

5. 调整布局和显示图形

plt.tight_layout()
plt.show()
  • 调整布局: tight_layout 自动调整子图参数,使之填充整个图形区域,避免标签重叠。
  • 显示图形: show 函数将所有的绘图输出显示在一个窗口中。


以上各模块协同工作,提供了一个完整的数据可视化解决方案,以便用户可以直观地理解和分析人口数据。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

相关文章
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
78 33
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
126 80
|
3月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
172 59
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
52 14
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
116 2

推荐镜像

更多