【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】

简介: 【Python】Python城乡人口数据分析可视化(代码+数据集)【独一无二】

一、设计目的

使用python读取excel数据表,分析和可视化一个国家或地区人口数据的多个重要方面。具体来说,它旨在通过四种不同的图表类型来展示数据,以便更全面地理解人口结构和动态变化。这些图表分别是:


  1. 柱状图:年末总人口变化 - 该图显示了不同年份的总人口数,用于观察人口总量随时间的增减趋势,以评估人口增长或减少的速度和规模。


  1. 饼状图:男女人口比例 - 通过展示最新年份的男性与女性人口比例,该图提供了性别分布的快照,这对于评估性别比平衡与否至关重要。


  1. 线形图:城镇和乡村人口变化 - 该图比较了城镇人口和乡村人口在不同年份的变化情况,通过这种比较可以理解城镇化进程的速度和农村地区的人口减少情况。


  1. 散点图:城市人口与年末总人口关系 - 通过展示城镇和乡村人口与总人口之间的关系,该图旨在   探讨人口分布的模式,特别是城市化程度与总人口规模的关系。


综合分析有助于政策制定者、研究者和公众更好地了解人口的基本动态,为政策制定和规划提供数据支持。同时,通过合理的可视化展示,可以使信息更容易被理解和传达,促进更有效的沟通和决策过程。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈


二、数据分析可视化

2.1 分析年末总人口的变化情况

2.2 分析年末男女人口比例

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

2.3 分析年末城镇和乡村人口随时间的变化趋势

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

2.4 分析年末年末总人口与城市人口之间的关系


三、代码分析

代码主要由几个模块组成,每个模块都有特定的功能,以下是各个模块的详细分析:

1. 导入模块和设置

import pandas as pd
import matplotlib.pyplot as plt


  • 导入模块: pandas 用于数据处理和分析,尤其擅长处理表格数据;matplotlib.pyplot 用于数据的可视化,提供了一个类似 MATLAB 的绘图框架。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

plt.rcParams['font.sans-serif'] = ['SimHei']
  • 设置中文显示: 为了在图表中正确显示中文,这行代码指定了使用 SimHei 字体,这是一种常用的中文黑体。

2. 读取数据

data = pd.read_excel('人口.xls', header=2)
  • 读取Excel文件: 这行代码使用 pandasread_excel 函数从 人口.xls 文件读取数据,header=2 表示数据的标题行是第三行(从0开始计数)。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

3. 数据提取

years = data.columns[1:]
  • 提取年份列: 这行代码获取数据中除了第一列之外的所有列,这些列代表了不同的年份,这对于后续的时间序列分析至关重要。

4. 绘制图形

4.1 设置画布和子图
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
  • 设置画布和子图: subplots 创建一个图形窗口和一组子图,这里创建了一个 2x2 的子图数组,每个子图都可以单独绘制不同的图表。
4.2 柱状图 - 年末总人口变化
axs[0, 0].bar(years, data.loc[0, years], color='blue')
axs[0, 0].set_title('年末总人口变化(周玉洁)')
axs[0, 0].set_ylabel('总人口(万人)')

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

  • 绘制柱状图: 显示了每个年份的总人口数,用于观察人口随时间的变化趋势。
  • 设置标题和标签: 包括标题和y轴标签,以及x轴标签的旋转,以便更好地显示年份信息。
4.3 饼状图 - 男女人口比例
axs[0, 1].pie(data.loc[1:2, '2022年'], labels=gender_labels, autopct='%1.1f%%', colors=['lightblue', 'lightcoral'])
axs[0, 1].set_title('男女人口比例(周玉洁)')
  • 绘制饼状图: 展示2022年的男性和女性人口比例。
  • 设置颜色和标签: 使用自定义颜色和百分比显示。
4.4 主线图 - 城镇人口和乡村人口变化
axs[1, 0].plot(years, data.loc[3, years], marker='o', label='城镇人口', color='green')
axs[1, 0].plot(years, data.loc[4, years], marker='s', label='乡村人口', color='orange')
axs[1, 0].set_title('城镇和乡村人口变化(周玉洁)')
# 略.....
  • 绘制主线图: 显示城镇和乡村人口随时间的变化。
  • 添加图例和标签: 标记不同的数据系列,并添加图例。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

4.5 散点图 - 城市人口与年末总人口关系
axs[1, 1].scatter(data.loc[0, years], data.loc[3, years], c='red', marker='^', label='城镇人口')
axs[1, 1].scatter(data.loc[0, years], data.loc[4, years], c='blue', marker='o', label='乡村人口')
axs[1, 1].set_title('城市人口与年末总人口关系(周玉洁)')
axs[1, 1].set_xlabel('年末总人口(万人)')
axs[1, 1].set_ylabel('城市人口(万人)')
axs[1, 1].legend()
  • 绘制散点图: 探讨城镇和乡村人口与总人口的关系。
  • 设置标签和图例: 详细标记坐标轴,并说明数据点代表的意义。

5. 调整布局和显示图形

plt.tight_layout()
plt.show()
  • 调整布局: tight_layout 自动调整子图参数,使之填充整个图形区域,避免标签重叠。
  • 显示图形: show 函数将所有的绘图输出显示在一个窗口中。


以上各模块协同工作,提供了一个完整的数据可视化解决方案,以便用户可以直观地理解和分析人口数据。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 城乡人口分析 ” 获取。👈👈👈

相关文章
|
2天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
3天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
1天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
|
3天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
13 4
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
76 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
167 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
82 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
4天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
26 2
|
2月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
55 5
下一篇
无影云桌面