实时计算 Flink版产品使用问题之如何进行MySQL到MySQL的动态同步

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:在Flink CDC使用mongodbcdc时,如果通过SQL执行连接并处理大量数据,该怎么处理?

在Flink CDC使用mongodbcdc时,如果通过SQL执行连接并处理大量数据,是否会因等待快照完成才刷新状态到检查点而导致数据处理停滞?文档中提到的在快照时不进行自动检查点的相关内容现在找不到了,对于快照期间涉及的状态数据管理应如何处理?



参考答案:

在Flink CDC中,MongoDB CDC使用SQL执行连接时,如果数据量比较大,可能会导致数据卡住。这是因为MongoDB CDC必须等待快照完成后才会将状态刷新到检查点。在快照完成之前,检查点的大小为0。

关于快照时不进行自动检查点的问题,我无法提供确切的信息,因为我无法找到相关的官方文档。但是,你可以尝试以下方法来解决这个问题:

  1. 增加内存:根据你的实际情况,可以考虑增加Flink任务的内存分配,以便在快照过程中处理更多的状态数据。
  2. 调整并行度:尝试调整Flink任务的并行度,以充分利用集群资源并提高处理速度。
  3. 优化SQL查询:检查你的SQL查询是否高效,避免在快照过程中产生大量的计算任务。
  4. 使用增量检查点:在Flink 1.11及更高版本中,可以使用增量检查点功能。这将允许Flink在快照过程中定期更新检查点,从而减少数据卡住的可能性。要启用增量检查点,请在Flink配置文件中设置state.checkpoints.dirstate.checkpoints.incremental参数。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590848



问题二:flink cdc支持sink到mongo吗?

flink cdc支持sink到mongo吗?



参考答案:

只要 flink 支持就行。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590847



问题三:flink cdc不支持sink到mysql嘛?

flink cdc不支持sink到mysql嘛?



参考答案:

只要 flink 支持就行。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590846



问题四:怎么基于 Flink CDC 3.0 构建 MySQL 到 Doris 的 任务啊?

Flink CDC里就是通过基于 Flink CDC 3.0 构建 MySQL 到 Doris 的 Streaming ELT 这种方式来提交任务 可以在yaml文件中设置重启策略和存储checkpoint嘛?类似下方截图



参考答案:

现在只能在flink-conf.yaml 里配置,在任务文件里配置计划在3.1支持。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590888



问题五:Flink CDC里3.0支持MySQL到MySQL的动态同步嘛,有没有yaml配置文件样例?

Flink CDC里3.0支持MySQL到MySQL的动态同步嘛,有没有yaml配置文件样例?



参考答案:

用户需要配置源和目标数据库连接信息、表过滤规则等。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590886

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1237 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
198 0
|
3天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
34 16
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
157 56
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
83 1
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
存储 运维 监控
阿里云实时计算Flink版的评测
阿里云实时计算Flink版的评测
87 15
|
2月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。

相关产品

  • 实时计算 Flink版