m基于Qlearning强化学习的小车倒立摆控制系统matlab仿真

简介: 在MATLAB 2022a中模拟的Q-learning倒立摆控制显示出稳定平衡效果。Q-learning算法通过智能体与环境交互学习最佳控制策略,以维持摆杆直立。算法基于状态s和动作a更新Q值表,目标是最大化未来奖励。系统状态包括小车位置、速度、杆角度及角速度。动作是小车加速度。当状态或动作空间大时,用神经网络近似Q函数,DQN通过经验回放和目标网络稳定学习。核心代码涉及状态更新、贪婪策略选择动作及环境反馈,实时更新摆杆和小车位置。

1.算法仿真效果
matlab2022a仿真结果如下:
8c5ee4fdc9efb83c12bb4c3b62c92775_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
f2a5acd65ed0c92bae06c09cdf11803e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基于Q-learning的强化学习方法应用于小车倒立摆控制系统,是通过让智能体(即控制小车的算法)在与环境的交互过程中学习到最优的控制策略,以保持倒立摆在不稳定平衡状态下的直立。Q-learning作为一种无模型的强化学习算法,特别适合解决这类动态环境下的决策问题。

   Q-learning的核心在于学习一个动作价值函数Q(s,a),该函数衡量了在状态s下采取行动a后,预期累积奖励的总和。其更新规则为:

f3f09d549993b9588c8cf12518121351_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   小车倒立摆系统由一个小车和其上一根可自由摆动的杆组成,目标是通过控制小车在水平轨道上的移动,使摆杆维持在直立状态。系统状态通常由小车位置x、小车速度v、摆杆角度θ以及摆杆角速度˙θ˙来描述,即s=(x,v,θ,θ˙)。

   在倒立摆控制系统中,动作空间通常定义为小车的加速度或力的大小,记作a。每一步,智能体基于当前状态st​选择一个动作at​,并观察到新的状态st+1​和即时奖励rt+1​。奖励设计是关键,一般而言,当摆杆接近直立且小车稳定时给予正奖励,反之则给予负奖励或惩罚。

  当状态空间或动作空间非常大时,直接使用表格方法不可行,此时引入函数近似来估算Q值。假设有一个函数近似器Q(s,a∣θ),其中θ是参数向量,更新规则变为梯度上升形式:

0c8913a879503dc55457faf780dd874f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  在深度Q-learning(DQN)中,通常使用深度神经网络作为Q函数的近似器,利用经验回放和固定目标网络来稳定学习过程。

3.MATLAB核心程序
```。。。。。。........................................................% 时间步循环
for t = 1:Times
t
% 更新j
idj = NewState;
% 策略:使用贪婪方法定义动作
[~,idi] = max(Qtable(idj,:));
A = action(idi);
% 更新状态
[State,Reward,~] = func_model(State,A);
% 量化连续状态以提取下一个状态索引
NewState = func_idx(State,Cars); % extract state index

ha        = gca(h2);
%车位置和杆角度
x         = State(1);
theta     = State(3);
Car_show1 = findobj(ha,'Tag','Car_show1');
Car_show2 = findobj(ha,'Tag','Car_show2');

% 更新车和杆的位置
[Xcar,~]  = centroid(Car1);
[Xp,Yp]   = centroid(Car_show3);
dx        = x - Xcar;
thetad    = theta - atan2(Xcar-Xp,Yp-0.25/2);
Car1      = translate(Car1,[dx,0]);
Car_show3 = translate(Car_show3,[dx,0]);
Car_show3 = rotate(Car_show3,rad2deg(thetad),[x,0.25/2]);
Car_show1.Shape = Car1;
Car_show2.Shape = Car_show3;
pause(0.02)

end
0Z_004m

```

相关文章
|
6天前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
3天前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
22小时前
|
算法
基于COPE协议的网络RLNCBR算法matlab性能仿真
摘要: 本研究聚焦于COPE协议与RLNCBR算法(MATLAB仿真),整合随机线性网络编码与背压路由,优化网络编码技术以增强吞吐量与鲁棒性。实验在MATLAB2022a下执行,展示了平均传输次数随接收节点数(N:2-10)变化趋势(P1=...=Pn=0.08,重传间隔100Δt)。COPE协议利用编码机会提高效率,而RLNCBR算法动态调整路径,减少拥塞,提升成功率。数学模型与仿真实验证实算法有效提升网络性能,降低时延与丢包率。[总计239字符]
|
22小时前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
7天前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
8天前
|
传感器 算法 数据安全/隐私保护
基于鲸鱼优化的DSN弱栅栏覆盖算法matlab仿真
```markdown 探索MATLAB2022a中WOA与DSN弱栅栏覆盖的创新融合,模拟鲸鱼捕食策略解决传感器部署问题。算法结合“搜索”、“包围”、“泡沫网”策略,优化节点位置以最大化复杂环境下的区域覆盖。目标函数涉及能量效率、网络寿命、激活节点数、通信质量及覆盖率。覆盖评估基于覆盖半径比例,旨在最小化未覆盖区域。 ```
|
3天前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章