基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割(2)

简介: 基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割

基于YOLOv8深度学习的智能道路裂缝检测与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割(1)https://developer.aliyun.com/article/1536749

二、目标分割模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

YOLO各版本性能对比:

YOLOv8网络结构如下:

2. 数据集准备与训练

通过网络上搜集关于道路裂缝相关图片,并使用Labelimg标注工具对每张图片中的分割结果及类别进行标注。一共包含4029张图片,其中训练集包含3717张图片验证集包含200张图片测试集包含112张图片部分图像及标注如下图所示。

数据集的具体分布如下所示:

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集、验证集、测试集放入Data目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\3SegProgram\RoadCrackSeg\datasets\Data\train
val: E:\MyCVProgram\3SegProgram\RoadCrackSeg\datasets\Data\valid
test: E:\MyCVProgram\3SegProgram\RoadCrackSeg\datasets\Data\test
nc: 1
names: ["Crack"]

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载yolov8预训练模型
model = YOLO("yolov8n-seg.pt")
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/Data/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)、动态特征损失(dfl_loss)以及分割损失(seg_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

分割损失(seg_loss):预测的分割结果与标定分割之前的误差,越小分割的越准确;

本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP。

定位结果的PR曲线如下:

分割结果的PR曲线如下:

从上面图片曲线结果可以看到:定位的平均精度为0.799,分割的平均精度为0.685,结果还是很不错的。

4. 模型推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/168.rf.a23616300d6cacf19bdd64fde2cf7a6e.jpg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='segment')
# model = YOLO(path, task='segment',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款智能道路裂缝检测与分析系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存。

相关文章
|
5天前
|
监控 前端开发 API
实战指南:使用Python Flask与WebSocket实现高效的前后端分离实时系统
【7月更文挑战第18天】构建实时Web应用,如聊天室,可借助Python的Flask和WebSocket。安装Flask及Flask-SocketIO库,创建Flask应用,处理WebSocket事件。前端模板通过Socket.IO库连接服务器,发送和接收消息。运行应用,实现实时通信。此示例展现了Flask结合WebSocket实现前后端实时交互的能力。
|
1天前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
【7月更文挑战第22天】数据科学中,Matplotlib和Seaborn是Python的可视化主力。Matplotlib用于基础图表,如示例中的折线图;Seaborn则强化统计图形,如分布图。两者结合能创建复杂的可视化,如显示趋势与分布的同一图表。通过学习和运用这些工具,数据分析师能提升效率,更好地讲述数据故事。
9 2
|
7天前
|
并行计算 监控 数据处理
构建高效Python应用:并发与异步编程的实战秘籍,IO与CPU密集型任务一网打尽!
【7月更文挑战第16天】Python并发异步提升性能:使用`asyncio`处理IO密集型任务,如网络请求,借助事件循环实现非阻塞;`multiprocessing`模块用于CPU密集型任务,绕过GIL进行并行计算。通过任务类型识别、任务分割、避免共享状态、利用现代库和性能调优,实现高效编程。示例代码展示异步HTTP请求和多进程数据处理。
22 8
|
2天前
|
算法 数据处理 索引
告别低效搜索!Python中Trie树与Suffix Tree的实战应用秘籍!
【7月更文挑战第21天】探索Python中的字符串搜索效率提升:使用Trie树与Suffix Tree。Trie树优化单词查询,插入和删除,示例展示其插入与搜索功能。Suffix Tree,复杂但强大,适用于快速查找、LCP查询。安装[pysuffixtree](https://pypi.org/project/pysuffixtree/)库后,演示查找子串及最长公共后缀。两者在字符串处理中发挥关键作用,提升数据处理效率。**
|
6天前
|
算法 数据挖掘 计算机视觉
Python并查集实战宝典:从入门到精通,让你的数据结构技能无懈可击!
【7月更文挑战第17天】并查集,如同瑞士军刀,是解决元素分组问题的利器,应用于好友关系、像素聚类、碰撞检测和连通性分析等场景。本文从基础到实战,介绍并查集的初始化、查找与路径压缩、按秩合并,以及在Kruskal算法中的应用。通过并查集,实现高效动态集合操作,对比哈希表和平衡树,其在合并与查找上的性能尤为突出。学习并查集,提升算法解决复杂问题的能力。
|
4天前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
【7月更文挑战第19天】Trie树,又称前缀树,是优化字符串搜索的高效数据结构。通过利用公共前缀,Trie树能快速插入、删除和查找字符串。
20 2
|
7天前
|
前端开发 JavaScript UED
Python Web应用中的WebSocket实战:前后端分离时代的实时数据交换
【7月更文挑战第16天】在前后端分离的Web开发中,WebSocket解决了实时数据交换的问题。使用Python的Flask和Flask-SocketIO库,后端创建WebSocket服务,监听并广播消息。前端HTML通过JavaScript连接到服务器,发送并显示接收到的消息。WebSocket适用于实时通知、在线游戏等场景,提升应用的实时性和用户体验。通过实战案例,展示了如何实现这一功能。
|
7天前
|
机器学习/深度学习 自然语言处理 机器人
基于深度学习的智能语音机器人交互系统设计方案
**摘要** 本项目旨在设计和实现一套基于深度学习的智能语音机器人交互系统,该系统能够准确识别和理解用户的语音指令,提供快速响应,并注重安全性和用户友好性。系统采用分层架构,包括用户层、应用层、服务层和数据层,涉及语音识别、自然语言处理和语音合成等关键技术。深度学习模型,如RNN和LSTM,用于提升识别准确率,微服务架构和云计算技术确保系统的高效性和可扩展性。系统流程涵盖用户注册、语音数据采集、识别、处理和反馈。预期效果是高识别准确率、高效处理和良好的用户体验。未来计划包括系统性能优化和更多应用场景的探索,目标是打造一个适用于智能家居、医疗健康、教育培训等多个领域的智能语音交互解决方案。
|
2天前
|
数据可视化 数据挖掘 定位技术
Python 中的地理信息系统
【7月更文挑战第16天】 - GIS在地图制作、空间分析及各行业(如城市规划、资源管理)中至关重要。 - Python凭借其易用性和丰富库(如Geopandas、Matplotlib、Folium)简化了地理数据处理和可视化。 - 开发者需先安装Geopandas、Matplotlib和Folium库。 - Geopandas用于数据处理,Matplotlib绘制静态地图,Folium创建交互式地图。 - 示例代码展示了地图绘制、数据整合、空间查询、动态
11 0