【从零开始学习深度学习】35. 门控循环神经网络之门控循环单元(gated recurrent unit,GRU)介绍、Pytorch实现GRU并进行训练预测

简介: 【从零开始学习深度学习】35. 门控循环神经网络之门控循环单元(gated recurrent unit,GRU)介绍、Pytorch实现GRU并进行训练预测

1. 门控循环单元设计

门控循环单元的设计在原始RNN的基础上引入了重置门(reset gate)和更新门(update gate)的概念,从而修改了循环神经网络中隐藏状态的计算方式。

1.1 重置门和更新门

如下图所示,门控循环单元中的重置门和更新门的输入均为当前时间步输入Xt与上一时间步隐藏状态Ht1,输出由激活函数为sigmoid函数的全连接层计算得到。


image.png

1.2 候选隐藏状态

接下来,门控循环单元将计算候选隐藏状态来辅助稍后的隐藏状态计算。如下图所示,我们将当前时间步重置门的输出与上一时间步隐藏状态做按元素乘法(符号为⊙ \odot)。如果重置门中元素值接近0,那么意味着重置对应隐藏状态元素为0,即丢弃上一时间步的隐藏状态。如果元素值接近1,那么表示保留上一时间步的隐藏状态。然后,将按元素乘法的结果与当前时间步的输入连结,再通过含激活函数tanh的全连接层计算出候选隐藏状态,其所有元素的值域为[1,1]


image.png

1.3 隐藏状态


image.png

更新门可以控制隐藏状态应该如何被包含当前时间步信息的候选隐藏状态所更新,如上图所示。假设更新门在时间步ttt<t)之间一直近似1。那么,在时间步'tt之间的输入信息几乎没有流入时间步t的隐藏状态tHt。实际上,这可以看作是较早时刻的隐藏状态Ht1一直通过时间保存并传递至当前时间步t。这个设计可以应对循环神经网络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较大的依赖关系。

总结:

  • 重置门有助于捕捉时间序列里短期的依赖关系;
  • 更新门有助于捕捉时间序列里长期的依赖关系。

2 读取数据集

为了实现并展示门控循环单元,下面依然使用上一篇文章中的周杰伦歌词专辑数据集来训练模型作词。

数据集获取参见上一篇文章《【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例–使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】》。

import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()

3 从零实现门控循环单元并进行歌词训练与预测

3.1 初始化模型参数

对模型参数进行初始化,超参数num_hiddens定义了隐藏单元的个数。

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)
def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
                torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))
    
    W_xz, W_hz, b_z = _three()  # 更新门参数
    W_xr, W_hr, b_r = _three()  # 重置门参数
    W_xh, W_hh, b_h = _three()  # 候选隐藏状态参数
    
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
    return nn.ParameterList([W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q])

3.2 定义模型

定义隐藏状态初始化函数init_gru_state,它返回由一个形状为(批量大小, 隐藏单元个数)的值为0的Tensor组成的元组。

def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

下面根据门控循环单元的计算表达式定义模型。

def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid(torch.matmul(X, W_xz) + torch.matmul(H, W_hz) + b_z)
        R = torch.sigmoid(torch.matmul(X, W_xr) + torch.matmul(H, W_hr) + b_r)
        H_tilda = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(R * H, W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

3.3 训练模型并创作歌词

我们在训练模型时只使用相邻采样。设置好超参数后,我们将训练模型并根据前缀“分开”和“不分开”分别创作长度为50个字符的一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

我们每过40个迭代周期便根据当前训练的模型创作一段歌词。

d2l.train_and_predict_rnn(gru, get_params, init_gru_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, False, num_epochs, num_steps, lr,
                          clipping_theta, batch_size, pred_period, pred_len,
                          prefixes)

输出:

epoch 40, perplexity 152.550790, time 2.29 sec
 - 分开 我不不 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你
 - 不分开 一哼我 我不不 你不了我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 
epoch 80, perplexity 32.991306, time 2.28 sec
 - 分开 我想要这样的微笑在人人卷戏 爱不再再我 你的美美 你在完人  你在在人的溪边默默默默默著著我 娘子
 - 不分开 我不能再想 我不要再想 我不能再想 我不能再想 我不能再想 我不能再想 我不能再想 我不能再想 我
epoch 120, perplexity 6.238240, time 2.39 sec
 - 分开 我想就这样牵着你的手不放开 爱可不可以简简单单没有伤害 你 靠着我的肩膀 你 在我胸口睡著 一定个
 - 不分开 不知再觉 你是一个人演慢 一直风 三步三步步步四望 连成线背著背默默许下心愿 看远方的星如下听的见
epoch 160, perplexity 1.926641, time 2.64 sec
 - 分开 我不要再宣牵我对你 感感 让给我抬起你有 从杰去真医 你在过人 何都没有 说我该轻的证  从情着头
 - 不分开 不知再觉 你是心蒙 迷迷了中留的寻找 停堡里一只点芜 长满杂草的泥剩 不会骑扫二的胖女还 用拉丁文

4 基于Pytorch的nn.GRU模块实现GRU并进行歌词训练与预测

在PyTorch中我们直接调用nn模块中的GRU类即可。

lr = 1e-2 # 注意调整学习率
gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens)
model = d2l.RNNModel(gru_layer, vocab_size).to(device)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

输出:

epoch 40, perplexity 1.017262, time 0.87 sec
 - 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让
 - 不分开始打呼 管家是一只会说法语举止优雅的猪 吸血前会念约翰福音做为弥补 拥有一双蓝色眼睛的凯萨琳公主 专
epoch 80, perplexity 1.015187, time 1.22 sec
 - 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让
 - 不分开 它一定实现 娘子 娘子却依旧每日 折一枝杨柳 你在那里 在小村外的溪边河口默默等著我 娘子依旧每日
epoch 120, perplexity 1.013440, time 0.85 sec
 - 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让
 - 不分开 陷入了危险边缘Baby  我的世界已狂风暴雨 Wu  爱情来的太快就像龙卷风 离不开暴风圈来不及逃
epoch 160, perplexity 1.910635, time 0.82 sec
 - 分开的话你甘会听 有教堂有城堡 每天忙碌地的寻找 到底什么我有多烦恼  没有你烦我有多烦恼  没有多烦恼
 - 不分开 别发抖 快给我抬起头 有话去对医药箱说 别怪我 别发抖 快给我抬起头 有话去对医药箱说 别怪我 别

总结

  • 门控循环神经网络可以更好地捕捉时间序列中时间步距离较大的依赖关系。
  • 门控循环单元引入了门的概念,从而修改了循环神经网络中隐藏状态的计算方式。它包括重置门、更新门、候选隐藏状态和隐藏状态。
  • 重置门有助于捕捉时间序列里短期的依赖关系。
  • 更新门有助于捕捉时间序列里长期的依赖关系。
相关文章
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
145 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
2月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
325 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
67 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
25天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
48 8
|
3月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
164 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
2月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
513 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
64 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 算法 TensorFlow
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
501 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
下一篇
DataWorks