【算法与数据结构】二叉树(前中后)序遍历2

简介: 【算法与数据结构】二叉树(前中后)序遍历

【算法与数据结构】二叉树(前中后)序遍历1:https://developer.aliyun.com/article/1474432

🌠后序遍历

后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。

后序遍历是先遍历一个结点的左右子树,最后再访问这个结点。

void PostOrder(BTNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }

  PostOrder(root->left);
  PostOrder(root->right);
  printf("%d ", root->val);
}

后序运行图:

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。

🌠二叉树节点个数

这里分别实现前序、中序和后序遍历方式统计二叉树节点个数:

前序遍历:

int PreOrderCount(BTNode* root) 
{
  if(root == NULL) return 0;

  count++;  
  PreOrderCount(root->left);
  PreOrderCount(root->right);

  return count;
}

int TreeSize(BTNode* root) 
{
  if(root == NULL) return 0;  

  count = 0;
  PreOrderCount(root);

  return count;
}

中序遍历:

inint InOrderCount(BTNode* root) 
{
  if(root == NULL) return 0;
    
  InOrderCount(root->left);

  count++;

  InOrderCount(root->right);

  return count;
}

int TreeSize(BTNode* root) 
{
  if(root == NULL) return 0;

  count = 0;  
  InOrderCount(root);

  return count;
}

后序遍历:

int PostOrderCount(BTNode* root) 
{
  if(root == NULL) return 0;

  PostOrderCount(root->left);
  PostOrderCount(root->right);

  count++;

  return count;
}

int TreeSize(BTNode* root) 
{
  if(root == NULL) return 0;

  count = 0;
  PostOrderCount(root);

  return count;
}

三种遍历方式都是通过递归遍历每个节点,并在遍历每个节点时将统计变量count加1,最终count的值即为树的节点总数。

🌉二叉树节点个数注意点

注意当我们TreeSize函数使用了static变量size来统计节点个数,static变量的值会在函数调用之间保留,所以第二次调用TreeSize时,size的值会继续增加,导致统计结果叠加。

int TreeSize(BTNode* root)
{
  static int size = 0;
  if (root == NULL)
    return 0;
  else
    ++size;
  TreeSize(root->left);
  TreeSize(root->right);
  return size;
}
int main()
{
  printf("TreeSize : %d\n", TreeSize(root));
  printf("TreeSize : %d\n", TreeSize(root));
}

代码运行:

改进

为了解决使用static变量导致的结果叠加问题,可以考虑使用以下方法:

  1. 每次调用TreeSize前重置size为0:
int TreeSize(BTNode* root) {
  static int size = 0;
  size = 0; 
  // reset size
  
  if (root == NULL) 
    return 0;
  else
    ++size;

  TreeSize(root->left);
  TreeSize(root->right);

  return size;
}
  1. 不使用static变量,直接返回递归调用的结果:
int TreeSize(BTNode* root) 
{
  if (root == NULL)
    return 0;
  else 
    return 1 + TreeSize(root->left) + TreeSize(root->right);
}
int

如果当前节点为NULL,直接返回0否则,返回:当前节点本身为1,加上左子树的节点数(TreeSize(root->left)返回值),加上右子树的节点数(TreeSize(root->right)返回值)

  1. 将size定义为函数参数,每次递归传递:
intint TreeSize(BTNode* root, int* size) 
{
  if (root == NULL) 
    return 0;
  
  *size += 1;

  TreeSize(root->left, size);
  TreeSize(root->right, size);

  return *size;
}
int main()
{
  // 调用
  int size = 0;
  TreeSize(root, &size);
}

🚩总结

相关文章
|
4月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
115 1
|
4月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
123 0
|
8月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
237 10
 算法系列之数据结构-二叉树
|
8月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
194 3
 算法系列之数据结构-Huffman树
|
8月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
279 22
|
28天前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
98 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
166 3
|
18天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
101 0
|
18天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
102 8
|
18天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)

热门文章

最新文章