【算法与数据结构】深入解析二叉树(二)之堆结构实现

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【算法与数据结构】深入解析二叉树(二)之堆结构实现

📝二叉树的顺序结构及实现

🌠 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。


🌠 堆的实现

堆(heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:

堆的物理结构本质上是顺序存储的,是线性的。但在逻辑上不是线性的,是完全二叉树的这种逻辑储存结构。 堆的这个数据结构,里面的成员包括一维数组,数组的容量,数组元素的个数,有两个直接后继。

堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。

(且)或者(), ()

若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。

将根结点最大的堆叫做最大堆或大根堆,根结点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等

堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

🌠 堆的实现

🌉堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

void AdjustDown(HPDataType* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    if (child+1<n && a[child + 1]>a[child])
    {
      child++;
    }
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}

🌉堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};

代码:

int size=sizeof(array)/sizeof(int);
//向下建堆,复杂度为O(N)
for (int i = (size - 1 - 1) / 2; i >= 0; i--)
{
  AdjustDown(array, size,i);
}
void AdjustDown(HPDataType* a, int n, int parent)
{ //a是数组指针,n是数组长度,parent是当前需要下调的父结点索引

  int child = parent * 2 + 1;
  //child表示父结点parent的左孩子结点索引,因为是完全二叉堆,可以通过parent和2计算得到

  while (child < n)
  {
    //如果左孩子存在

    if (child + 1 < n && a[child + 1] < a[child])
    {
      //如果右孩子也存在,并且右孩子值小于左孩子,则child指向右孩子
      child++;
    }
    if (a[child] < a[parent])
      //如果孩子结点值小于父结点值,则需要交换
    {
      Swap(&a[child], &a[parent]);
      //交换孩子和父结点
      parent = child;
      //父结点下移为当前孩子结点

      child = parent * 2 + 1;

      //重新计算新的左孩子结点索引

    }
    else
    {
      break;
    }
  }
}

这是向下调整,最终形成小根堆,如果你想修改大根堆只需改变两个代码方向即可:

if (child+1<n && a[child + 1]>a[child])
if (a[child] > a[parent])

🌉建堆时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

复杂度:O(N)

🌉堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

void HPPush(HP* php, HPDataType x)
{
  assert(php);

  if (php->size == php->capacity)
  {
    size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
    HPDataType * tmp = realloc(php->a, sizeof(HPDataType) * newCapacity);
    if (tmp == NULL)
    {
      perror("realloc fail");
      return;
    }
    php->a = tmp;
    php->capacity = newCapacity;
  }

  php->a[php->size] = x;
  php->size++;

  AdjustUp(php->a, php->size - 1);
}

🌉堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

//时间复杂度是:logN
void HPPop(HP* php)
{
  assert(php);
  assert(php->size > 0);
  
  Swap(&php->a[0], &php->a[php->size - 1]);
  php->size--;

  AdjustDown(php->a, php->size, 0);
}

🌠堆向上调整算法

堆向上调整算法主要用于堆排序中,删除堆顶元素后,将最后一个元素补至堆顶,然后需要向上调整。

//向上调整,建堆O(N*logN)
for (int i = 1; i < size; i++)
{ //for循环从索引1开始,到size结束,即从第二个元素开始。
  AdjustUp(array, i);
}
void AdjustUp(HPDataType* a, int child)
{
  int parent = (child - 1) / 2;//计算父节点的位置:父节点位置 = (当前节点位置-1)/2
  while (child > 0)//如果当前节点位置大于0,并且当前节点值小于父节点值,需要向上调整:
  {
    if (a[parent] < a[child])
    {
      Swap(&a[parent], &a[child]);
      child = parent;
      parent = (parent - 1) / 2;
    }//将当前节点位置设为父节点的位置,重复执行步骤2和步骤3
    //直到当前节点位置为0,或者当前节点值不小于父节点值为止。
    else
    {
      break;
    }
  }
}

堆向上调整的主要步骤::确定需要调整的子节点,通常是补至堆顶的最后一个元素。

时间复杂度为O(N*logN)

🌉堆的接口

# define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
#include<string.h>

typedef int HPDataType;

typedef struct Heap
{
  HPDataType* a;
  int size;
  int capacity;
}HP;

void Swap(int* px, int* py);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(HPDataType* a, int n, int parent);


//堆的简单初始化
//void HPInit(HP* php);
//堆的初始化+建堆
void HPInitArray(HP* php, HPDataType* a, int n);
//堆的销毁
void HPDestroy(HP* php);
//堆插入数据然后保持数据是堆
void HPPush(HP* php, HPDataType x);
//取堆顶的数据
HPDataType HPTop(HP* php);
//删除堆数据
void HPPop(HP* php);
//堆的数据个数
int HeapSize(HP* php);
//堆的判空
bool HPEmpty(HP* php);

🌠堆的实现

#include"HeadSort.h"
//堆的简单初始化
void HPInit(HP* php)
{
  assert(php);
  php->a = NULL;
  php->size = 0;
  php->capacity = 0;
}

void HPInitArray(HP* php, HPDataType* a, int n)
{
  assert(php);

  php->a = (HPDataType*)malloc(sizeof(HPDataType) * n);
  if (php->a == NULL)
  {
    perror("malloc fail");
    return;
  }

  memcpy(php->a, a, sizeof(HPDataType) * n);
  php->capacity = php->size = n;
  //HPInitArray:

  /*初始化堆数组,并将数据拷贝过来
  有两种方式建堆:
  向上调整:每个节点都与父节点比较,时间复杂度O(NlogN)向下调整:
  从最后一个非叶子节点开 始,每个节点与子节点比较,时间复杂度O(N)
  这里采用向下建堆,复杂度更低*/
  //向上调整,建堆O(N*logN)
  /*for (int i = 1; i < php->size; i++)
  {
    AdjustUp(php->a, i);
  }*/

  //向下建堆,复杂度为O(N)
  for (int i = (php->size - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(php->a, php->size,i);
  }
}

void HPDestroy(HP* php)
{
  assert(php);
  free(php->a);
  php->a = NULL;
  php->capacity = 0;
  php->size = 0;
}

void Swap(int* px, int* py)
{
  int temp = *px;
  *px = *py;
  *py = temp;
}

void AdjustUp(HPDataType* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    if (a[parent] > a[child])
    {
      Swap(&a[parent], &a[child]);
      child = parent;
      parent = (parent - 1) / 2;
    }
    else
    {
      break;
    }
  }
}

void HPPush(HP* php, HPDataType x)
{
  assert(php);

  if (php->size == php->capacity)
  {
    size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
    HPDataType * tmp = realloc(php->a, sizeof(HPDataType) * newCapacity);
    if (tmp == NULL)
    {
      perror("realloc fail");
      return;
    }
    php->a = tmp;
    php->capacity = newCapacity;
  }

  php->a[php->size] = x;
  php->size++;

  AdjustUp(php->a, php->size - 1);
}

HPDataType HPTop(HP* php)
{
  assert(php);
  return php->a[0];

}

void AdjustDown(HPDataType* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child < n)
  {
    if (child+1<n && a[child + 1]<a[child])
    {
      child++;
    }
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}

//时间复杂度是:logN
void HPPop(HP* php)
{
  assert(php);
  assert(php->size > 0);
  
  Swap(&php->a[0], &php->a[php->size - 1]);
  php->size--;

  AdjustDown(php->a, php->size, 0);
}

int HeapSize(HP* php)
{
  assert(php);
  return php->size;
}


bool HPEmpty(HP* php)
{
  assert(php);
  return php->size == 0;
}

🌠堆的实现代码测试

int main()
{
  int a[] = { 60,70,65,50,32,100 };
  HP hp;
  HPInitArray(&hp, a, sizeof(a) / sizeof(int));

  /*HPInit(&hp);
  for (int i = 0; i < sizeof(a) / sizeof(int); i++)
  {                         
    HPPush(&hp, a[i]);
  }

  printf("%d\n", HPTop(&hp));
  HPPop(&hp);
  printf("%d\n", HPTop(&hp));*/

  while (!HPEmpty(&hp))
  {
    printf("%d\n", HPTop(&hp));
    HPPop(&hp);
  }

  HPDestroy(&hp);
  return 0;
}


🚩总结

感谢你的收看,如果文章有错误,可以指出,我不胜感激,让我们一起学习交流,如果文章可以给你一个小小帮助,可以给博主点一个小小的赞😘

相关文章
|
2天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
27天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
140 30
|
6天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
247 15
|
2月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
75 4
|
2月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
9天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
139 80
|
2天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

推荐镜像

更多