【算法与数据结构】 C语言实现单链表队列详解2

简介: 【算法与数据结构】 C语言实现单链表队列详解

【算法与数据结构】 C语言实现单链表队列详解1:https://developer.aliyun.com/article/1474522

🌠测试

# define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include "Queue.h" 

int main() 
{
    Queue queue;
    QueueInit(&queue);

    printf("Queue is empty: %s\n", QueueEmpty(&queue) ? "true" : "false");

    printf("Pushing elements into the queue...\n");
    for (int i = 1; i <= 5; ++i) 
    {
        printf("Pushing %d\n", i);
        QueuePush(&queue, i);
    }

    printf("Queue size: %d\n", QueueSize(&queue));
    printf("Queue front: %d\n", QueueFront(&queue));
    printf("Queue back: %d\n", QueueBack(&queue));

    printf("Popping elements from the queue...\n");
    while (!QueueEmpty(&queue)) 
    {
        printf("Front: %d\n", QueueFront(&queue));
        QueuePop(&queue);
    }

    printf("Queue is empty: %s\n", QueueEmpty(&queue) ? "true" : "false");

    QueueDestroy(&queue);

    return 0;
}

代码效果图:

🌉 总源代码

Queue.c

#include "Queue.h"

void QueueInit(Queue* pq)
{
  assert(pq); // 断言队列指针是否为空
  pq->phead = NULL; // 初始化头节点指针为空
  pq->ptail = NULL; // 初始化尾节点指针为空  
  pq->size = 0; // 初始化队列大小为0
}

void QueueDestroy(Queue* pq)
{

  assert(pq); // 断言队列指针是否为空
  QNode* cur = pq->phead; // cur指向队列头节点
  while (cur)
  {
    QNode* next = pq->phead->next; // 保存cur下一个节点的指针
    free(cur); // 释放cur节点内存
    cur = next; // cur指针移到下一个节点
  }
  pq->phead = pq->ptail = NULL; // 重置头尾节点指针为空
  pq->size = 0; // 重置队列大小为0

}



void QueuePush(Queue* pq, QDataType* x)
{
  assert(pq); // 断言队列指针是否为空
  QNode* newnode = (QNode*)malloc(sizeof(QNode)); // 申请新节点内存
  if (newnode == NULL)
  { // 申请失败
    perror("malloc fail");
    return;
  }
  newnode->data = x; // 设置新节点数据
  newnode->next = NULL; // 设置新节点next指针为空

  if (pq->ptail)
  { // 如果队列不为空
    pq->ptail->next = newnode; // 尾节点指向新节点
    pq->ptail = newnode; // 更新尾节点指针
  }
  else
  { // 队列为空
    pq->phead = pq->ptail = newnode; // 头尾节点同时指向新节点
  }

  pq->size++; // 队列大小增加1

}

//出队列
void QueuePop(Queue* pq)
{

  assert(pq); // 断言队列指针是否为空
  if (pq->phead == NULL)
    return; // 队列为空直接返回

  assert(pq->phead != NULL); // 断言头节点不为空
  if (pq->phead->next == NULL)
  { // 队列只有一个节点
    free(pq->phead); // 释放头节点
    pq->phead = pq->ptail = NULL; // 头尾节点同时置空
  }
  else
  { // 队列有多个节点
    QNode* next = pq->phead->next; // 保存头节点的下一个节点
    free(pq->phead); // 释放头节点
    pq->phead = next; // 头节点指向下一个节点
  }

  pq->size--; // 队列大小减1

}

QDataType QueueFront(Queue* pq)
{
  assert(pq);

  assert(pq->phead != NULL);

  return pq->phead->data;
}

QDataType QueueBack(Queue* pq)
{
  assert(pq);

  //暴力检查
  assert(pq->ptail != NULL);

  return pq->ptail->data;
}

bool QueueEmpty(Queue* pq)
{
  assert(pq);
  
  return pq->size == 0;
}

int QueueSize(Queue* pq)
{
  assert(pq);

  return pq->size;
}
相关文章
|
9天前
|
存储 Java
java数据结构,线性表链式存储(单链表)的实现
文章讲解了单链表的基本概念和Java实现,包括头指针、尾节点和节点结构。提供了实现代码,包括数据结构、接口定义和具体实现类。通过测试代码演示了单链表的基本操作,如添加、删除、更新和查找元素,并总结了操作的时间复杂度。
java数据结构,线性表链式存储(单链表)的实现
|
18天前
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
23 5
【数据结构】优先级队列(堆)从实现到应用详解
|
6天前
|
前端开发
07_用队列实现栈
07_用队列实现栈
|
6天前
|
测试技术
02_由两个栈组成的队列
02_由两个栈组成的队列
|
9天前
|
存储
|
24天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
24天前
|
C语言
数据结构基础详解(C语言):图的基本概念_无向图_有向图_子图_生成树_生成森林_完全图
本文介绍了图的基本概念,包括图的定义、无向图与有向图、简单图与多重图等,并解释了顶点度、路径、连通性等相关术语。此外还讨论了子图、生成树、带权图及几种特殊形态的图,如完全图和树等。通过这些概念,读者可以更好地理解图论的基础知识。
|
26天前
|
存储 算法 C语言
C语言手撕数据结构代码_顺序表_静态存储_动态存储
本文介绍了基于静态和动态存储的顺序表操作实现,涵盖创建、删除、插入、合并、求交集与差集、逆置及循环移动等常见操作。通过详细的C语言代码示例,展示了如何高效地处理顺序表数据结构的各种问题。
|
3天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
1月前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
下一篇
无影云桌面