AI 与机器学习

简介: 阿里云致力于提升云计算基础能力,聚焦性能、稳定、安全和智能四大方向。在性能上,通过技术创新提升弹性;稳定性上,增强产品韧性和自动修复功能;安全上,将安全融入研发流程,提供一站式安全平台;智能方面,结合大型技术推动 Autonomous Cloud,提升开发者体验。此外,云原生开发范式升级,如Serverless化和容器服务ACS,简化开发运维,提高资源利用率,流程式开发工具则提升多云产品集成效率。

01-持续提升云计算基础能力


阿里云产品始终在性能、稳定、安全、智能四个方向持续演进。在性能方面,阿里云不断进行技术创新带来性能的突破,能够为客户带来更好的性能与弹性。在稳定性方面,阿里云持续提升产品的韧性,保证提供高可用的云服务,同时阿里云在产品上提升容灾能力的同时,强化了产品的自动修复能力。在安全方面,阿里云把安全融入到产品技术的研发流程,进行产品的安全能力升级,提供一站式的安全管理平台,帮助用户识别风险,辅助相应的应急响应,实现从系统层到业务层的整体业务系统安全以及响应的能力提升。在智能方面,将大模型技术与云计算融合,通过智能系统优化,AI 辅助开发,智能运维管理,智能客服等全面 AI 升级和优化,走向 Autonomous Cloud,希望未来的云可以像车一样能够自动驾驶,提升开发者使用云的体验。


02-以云原生开发范式增进效率


云的开发范式在进行一系列的升级,越来越多的云产品 Serverless 化,让开发者、企业级的用户做到“开箱即用”,真正把开发重心放在自身的业务系统,维护和优化由云来提供高质量的服务。容器已经成为了云上新一代应用的主流载体,阿里云致力于降低容器的使用门槛,让容器成为平衡云产品间资源管理的媒介,有效地帮助客户提高资源的利用率。为此,阿里云发布了容器计算服务 ACS,提供极简开发运维、开箱即用的容器服务。流程式开发有效串联了不的云产品。开发者从使用单一云产品到多元云产品,为了有效地连接各种云产品,需要运用流程式开发工具,通过事件总线或者函数计算的方式串联各种云产品,支撑复杂业务系统编排,有效地帮助业务开发者提升产品集成与开发的效率。

目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
37 3
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
14 2
|
4天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
23 2
|
15天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
25天前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
37 3
|
3月前
|
机器学习/深度学习 人工智能 算法
探索AI的魔法:机器学习与深度学习的奥秘
【8月更文挑战第27天】在这篇文章中,我们将深入探讨人工智能的两个重要分支:机器学习和深度学习。我们将首先理解它们的基本概念,然后通过Python代码示例,展示如何应用这些技术解决实际问题。无论你是AI新手,还是有经验的开发者,这篇文章都将为你提供新的知识和启示。让我们一起开启这场AI的魔法之旅吧!
|
3月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
120 0
|
5月前
|
机器学习/深度学习 人工智能 算法
人工智能(AI)、机器学习(ML)和深度学习(DL)
人工智能(AI)、机器学习(ML)和深度学习(DL)
160 1

热门文章

最新文章

下一篇
无影云桌面