机器学习超参调优:常用八种方法

简介: 超参数调优是机器学习例程中的基本步骤之一。该方法也称为超参数优化,需要搜索超参数的最佳配置以实现最佳性能。

机器学习算法需要用户定义的输入来实现准确性和通用性之间的平衡。这个过程称为超参数调整。有多种工具和方法可用于调整超参数。
image.png
我们整理了一份用于调整机器学习模型超参数的前八种方法的列表。

1.贝叶斯优化
贝叶斯优化已成为机器学习算法超参数调整的有效工具,更具体地说,适用于深度神经网络等复杂模型。它提供了一个有效的框架来优化昂贵的黑盒功能,而无需知道它的形式。它已应用于多个领域,包括学习最优机器人力学、序列实验设计和合成基因设计。

2.遗传算法
遗传算法 (EA) 是一种优化算法,它通过根据称为算子的某些规则修改一组候选解决方案(种群)来工作。EA 的主要优势之一是它们的通用性:这意味着 EA 可以在广泛的条件下使用,因为它们简单且独立于潜在问题。在超参数调整问题中,遗传算法已被证明比基于精度/速度的网格搜索技术表现更好。

3.基于梯度的优化
基于梯度的优化是一种优化多个超参数的方法,基于机器学习模型选择标准相对于超参数的梯度计算。当满足训练标准的一些可微性和连续性条件时,可以应用这种超参数调整方法。

4.网格搜索
网格搜索是超参数调优的基本方法。它对用户指定的超参数集执行详尽的搜索。这种方法是最直接的导致最准确的预测。使用这种调优方法,用户可以找到最佳组合。网格搜索适用于几个超参数,但是搜索空间有限。

5.Keras Tuner
Keras Tuner是一个库,允许用户为机器学习或深度学习模型找到最佳超参数。该库有助于查找内核大小、优化学习率和不同的超参数。Keras Tuner可用于为各种深度学习模型获取最佳参数,以实现最高精度。

6.基于种群的优化
基于种群的方法本质上是一系列基于随机搜索(如遗传算法)的方法。最广泛使用的基于种群的方法之一是 DeepMind 提出的基于种群的训练(PBT)。PBT在两个方面,是一种独特的方法:
它允许在训练期间使用自适应超参数
它结合了并行搜索和顺序优化
7.ParamILS
ParamILS(参数配置空间中的迭代局部搜索)是一种用于自动算法配置的通用随机局部搜索方法。ParamILS 是一种自动算法配置方法,有助于开发高性能算法及其应用程序。

ParamILS 使用默认和随机设置进行初始化,并采用迭代第一改进作为辅助本地搜索过程。它还使用固定数量的随机移动来进行扰动,并且总是接受更好或同样好的参数配置,但会随机重新初始化搜索。

8.随机搜索
随机搜索可以说是对网格搜索的基本改进。该方法是指对可能参数值的某些分布的超参数进行随机搜索。搜索过程继续进行,直到达到所需的精度。随机搜索类似于网格搜索,但已证明比后者创建更好的结果。该方法通常被用作 HPO 的基线来衡量新设计算法的效率。尽管随机搜索比网格搜索更有效,但它仍然是一种计算密集型方法。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
139 4
|
3天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
44 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
23天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
59 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
40 6
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
153 1
|
2月前
|
机器学习/深度学习 数据采集 数据处理
谷歌提出视觉记忆方法,让大模型训练数据更灵活
谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。
39 2
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
96 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
3月前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
【10月更文挑战第5天】如何用贝叶斯方法来解决机器学习中的分类问题?
|
3月前
|
机器学习/深度学习 算法 API
机器学习入门(六):分类模型评估方法
机器学习入门(六):分类模型评估方法
|
3月前
|
机器学习/深度学习 算法 搜索推荐
机器学习入门(四):距离度量方法 归一化和标准化
机器学习入门(四):距离度量方法 归一化和标准化