基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(matlab代码)

简介: 基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(matlab代码)

1 主要内容

该程序复现《基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理》模型,建立运营商和多虚拟电厂的一主多从博弈模型,研究运营商动态定价行为和虚拟电厂能量管理模型,模型为双层,首先下层模型中,构建了多个虚拟电厂的联合调度模型,以每个虚拟电厂的运行成本最低为优化目标,而上层为领导者模型,主要是优化市场运营商的电价,包括售电电价和购电电价的优化,从而构成了主从博弈模型,在求解的过程中,上层采用的是粒子群算法,而下层则是调用CPLEX求解器进行求解,由于模型整体规模较大,故采用了元模型算法加速求解。程序采用matlab+cplex求解,注释清楚,运行可靠,方便学习参考!

  • 主从博弈模型

说明:将 DSO 和 VPP 的拥有者视为博弈的参与者。其中,DSO充当领导者,汇总各 VPP 上报的购售电量,结合上网电价和电网电价,考虑VPP 的价格响应行为,以最大化自身收益为目标为各VPP 制定交易电价;各VPP 充当跟随者,接收 DSO 制定的交易电价,合理安排内部各DER 出力,以最小化运行成本为目标制定与运营商交易的电量。领导者与跟随者之间顺次博弈,构成 Stackelberg 博弈,各 VPP 之间同时决策,形成非合作博弈。

  • 基于元模型的均衡算法流程图

该文章通过引入元模型提高系统运算速度作为一大亮点,这给我们创新提供了一个很好的思路,大家可以关注一下数学优化理论方面的新方法,将其应用于自建模型中,成为一个重要创新点。

2 部分代码

%% 算法总参数设定
Number=5; 
%% 根据超拉丁采样(LHS)生成Number个初始样本点
lambda_Wb=[0.40*ones(1,7),0.75*ones(1,4),1.20*ones(1,3),0.75*ones(1,4),1.20*ones(1,4),0.40*ones(1,2)];
% % lambda_Ws = 0.4*ones(1,24);
lambda_Ws=[0*ones(1,7),0.35*ones(1,4),0.5*ones(1,3),0.35*ones(1,4),0.5*ones(1,4),0*ones(1,2)];
%通过LHS生成样本点
for t=1:24
    temp=lhsdesign(Number,1); %生成每个时段的抽样中间辅助矩阵,为1维分Number层的超拉丁抽样结果
    lambda_DAs(:,t)=temp.*(lambda_Wb(t)-lambda_Ws(t))+lambda_Ws(t); %生成运营商制定的售电价格
    lambda_DAb(:,t)=lambda_DAs(:,t)+rand(Number,1).*(lambda_Wb(t)-lambda_DAs(:,t)); %生成运营商制定的购电价格(购电价应大于售电价所以这么写)
end
disp('超拉丁采样(LHS)生成Number个初始样本点,结束!')
%% 通过生成的样本点调用下层博弈模型,计算出每个VPP的交易电量来构成样本数据集
for i=1:Number
    [P_VPP_s1,P_VPP_b1,~]=Fun_VPP1(lambda_DAb(i,:),lambda_DAs(i,:));
    [P_VPP_s2,P_VPP_b2,~]=Fun_VPP2(lambda_DAb(i,:),lambda_DAs(i,:));
    [P_VPP_s3,P_VPP_b3,~]=Fun_VPP3(lambda_DAb(i,:),lambda_DAs(i,:));
    P_VPP_s(i,:)=[P_VPP_s1,P_VPP_s2,P_VPP_s3];
    P_VPP_b(i,:)=[P_VPP_b1,P_VPP_b2,P_VPP_b3];
end
disp('样本数据集构成,结束!')
%% 修正Kriging模型,计算每组样本点对应的目标函数值
for i=1:Number
    [C_DSO(i,1)]=Fun_DSO(lambda_DAs(i,:),lambda_DAb(i,:),P_VPP_b(i,:),P_VPP_s(i,:));
end
disp('计算每组样本点对应的目标函数值,结束!')
%% 关键区域划分,并计算各个区域的最优值
l=1; %划分的区域的编号,初始化为1(编号越小,说明该区域包含最优解的概率越大) 
S=C_DSO; %设定S为所有电价样本对应的上层目标函数值集
for i=1:Number
    lambda_DA(i,:)=[lambda_DAs(i,:),lambda_DAb(i,:)]; %将售卖电价统一放入lambda_DA中存储
end
X=lambda_DA; %设定X为所有电价样本点集
SL=lambda_DA; %后续计算半径r中用于生成电价上下边界值的辅助变量
k_max=5; %设定均衡算法的最大迭代次数
[Max_C_DSO,ind]=max(C_DSO); %寻找区域1中最大的上层目标函数值和对应的电价样本点集编号
y(1).S=[Max_C_DSO]; %给y(l)的S赋予当前找到的上层目标函数值
y(l).X=lambda_DA(ind,:); %给y(1)的X赋予当前找到的最优电价样本
S(ind)=[]; %将S的集合中删去此时的区域1的最优解的值
SL(ind,:)=[];
lambda_DA0=lambda_DA(ind,:); %设定区域l的中心电价的值
while 1
    if isempty(S) %判断S是否为非空集(也就是关键区域完成划分)
        break;
    end
    eval(['y',num2str(l),'.S=[];']); 
    eval(['y',num2str(l),'.X=[];']);
    k=1; %设定初始迭代次数
    while k<=k_max
        if isempty(S) %判断S是否为非空集(也就是关键区域完成划分)
            break;
        else
            lambda_DA_max=max(sqrt(sum(SL.^2,2))); %计算得到电价的上边界值
            lambda_DA_min=min(sqrt(sum(SL.^2,2))); %计算得到电价的下边界值
            r=norm(lambda_DA_max-lambda_DA_min)/3*(k_max-k+1)/k_max; %计算得到半径r
            ind=Fun_R(lambda_DA0,SL,r); %寻找距离中心点小于等于r的点的编号
            if isempty(ind) %确认寻找到的点集非空
                break;
            else
                eval(['y',num2str(l),'.S=[y',num2str(l),'.S;S(ind)];']);
                eval(['y',num2str(l),'.X=[y',num2str(l),'.X;SL(ind,:)];']);
                S(ind)=[]; %将S的集合中删去此时距离小于r的值
                SL(ind,:)=[]; %将SL的集合中删去此时距离小于r的值
                k=k+1; %均衡算法迭代次数加一
            end
        end
    end


3 程序结果

4 下载链接

见下方联系方式

相关实践学习
使用DAS实现数据库自动扩容和回缩
暂无
相关文章
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
27 3
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。