基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(matlab代码)

简介: 基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理(matlab代码)

1 主要内容

该程序复现《基于元模型优化算法的主从博弈多虚拟电厂动态定价和能量管理》模型,建立运营商和多虚拟电厂的一主多从博弈模型,研究运营商动态定价行为和虚拟电厂能量管理模型,模型为双层,首先下层模型中,构建了多个虚拟电厂的联合调度模型,以每个虚拟电厂的运行成本最低为优化目标,而上层为领导者模型,主要是优化市场运营商的电价,包括售电电价和购电电价的优化,从而构成了主从博弈模型,在求解的过程中,上层采用的是粒子群算法,而下层则是调用CPLEX求解器进行求解,由于模型整体规模较大,故采用了元模型算法加速求解。程序采用matlab+cplex求解,注释清楚,运行可靠,方便学习参考!

  • 主从博弈模型

说明:将 DSO 和 VPP 的拥有者视为博弈的参与者。其中,DSO充当领导者,汇总各 VPP 上报的购售电量,结合上网电价和电网电价,考虑VPP 的价格响应行为,以最大化自身收益为目标为各VPP 制定交易电价;各VPP 充当跟随者,接收 DSO 制定的交易电价,合理安排内部各DER 出力,以最小化运行成本为目标制定与运营商交易的电量。领导者与跟随者之间顺次博弈,构成 Stackelberg 博弈,各 VPP 之间同时决策,形成非合作博弈。

  • 基于元模型的均衡算法流程图

该文章通过引入元模型提高系统运算速度作为一大亮点,这给我们创新提供了一个很好的思路,大家可以关注一下数学优化理论方面的新方法,将其应用于自建模型中,成为一个重要创新点。

2 部分代码

%% 算法总参数设定
Number=5; 
%% 根据超拉丁采样(LHS)生成Number个初始样本点
lambda_Wb=[0.40*ones(1,7),0.75*ones(1,4),1.20*ones(1,3),0.75*ones(1,4),1.20*ones(1,4),0.40*ones(1,2)];
% % lambda_Ws = 0.4*ones(1,24);
lambda_Ws=[0*ones(1,7),0.35*ones(1,4),0.5*ones(1,3),0.35*ones(1,4),0.5*ones(1,4),0*ones(1,2)];
%通过LHS生成样本点
for t=1:24
    temp=lhsdesign(Number,1); %生成每个时段的抽样中间辅助矩阵,为1维分Number层的超拉丁抽样结果
    lambda_DAs(:,t)=temp.*(lambda_Wb(t)-lambda_Ws(t))+lambda_Ws(t); %生成运营商制定的售电价格
    lambda_DAb(:,t)=lambda_DAs(:,t)+rand(Number,1).*(lambda_Wb(t)-lambda_DAs(:,t)); %生成运营商制定的购电价格(购电价应大于售电价所以这么写)
end
disp('超拉丁采样(LHS)生成Number个初始样本点,结束!')
%% 通过生成的样本点调用下层博弈模型,计算出每个VPP的交易电量来构成样本数据集
for i=1:Number
    [P_VPP_s1,P_VPP_b1,~]=Fun_VPP1(lambda_DAb(i,:),lambda_DAs(i,:));
    [P_VPP_s2,P_VPP_b2,~]=Fun_VPP2(lambda_DAb(i,:),lambda_DAs(i,:));
    [P_VPP_s3,P_VPP_b3,~]=Fun_VPP3(lambda_DAb(i,:),lambda_DAs(i,:));
    P_VPP_s(i,:)=[P_VPP_s1,P_VPP_s2,P_VPP_s3];
    P_VPP_b(i,:)=[P_VPP_b1,P_VPP_b2,P_VPP_b3];
end
disp('样本数据集构成,结束!')
%% 修正Kriging模型,计算每组样本点对应的目标函数值
for i=1:Number
    [C_DSO(i,1)]=Fun_DSO(lambda_DAs(i,:),lambda_DAb(i,:),P_VPP_b(i,:),P_VPP_s(i,:));
end
disp('计算每组样本点对应的目标函数值,结束!')
%% 关键区域划分,并计算各个区域的最优值
l=1; %划分的区域的编号,初始化为1(编号越小,说明该区域包含最优解的概率越大) 
S=C_DSO; %设定S为所有电价样本对应的上层目标函数值集
for i=1:Number
    lambda_DA(i,:)=[lambda_DAs(i,:),lambda_DAb(i,:)]; %将售卖电价统一放入lambda_DA中存储
end
X=lambda_DA; %设定X为所有电价样本点集
SL=lambda_DA; %后续计算半径r中用于生成电价上下边界值的辅助变量
k_max=5; %设定均衡算法的最大迭代次数
[Max_C_DSO,ind]=max(C_DSO); %寻找区域1中最大的上层目标函数值和对应的电价样本点集编号
y(1).S=[Max_C_DSO]; %给y(l)的S赋予当前找到的上层目标函数值
y(l).X=lambda_DA(ind,:); %给y(1)的X赋予当前找到的最优电价样本
S(ind)=[]; %将S的集合中删去此时的区域1的最优解的值
SL(ind,:)=[];
lambda_DA0=lambda_DA(ind,:); %设定区域l的中心电价的值
while 1
    if isempty(S) %判断S是否为非空集(也就是关键区域完成划分)
        break;
    end
    eval(['y',num2str(l),'.S=[];']); 
    eval(['y',num2str(l),'.X=[];']);
    k=1; %设定初始迭代次数
    while k<=k_max
        if isempty(S) %判断S是否为非空集(也就是关键区域完成划分)
            break;
        else
            lambda_DA_max=max(sqrt(sum(SL.^2,2))); %计算得到电价的上边界值
            lambda_DA_min=min(sqrt(sum(SL.^2,2))); %计算得到电价的下边界值
            r=norm(lambda_DA_max-lambda_DA_min)/3*(k_max-k+1)/k_max; %计算得到半径r
            ind=Fun_R(lambda_DA0,SL,r); %寻找距离中心点小于等于r的点的编号
            if isempty(ind) %确认寻找到的点集非空
                break;
            else
                eval(['y',num2str(l),'.S=[y',num2str(l),'.S;S(ind)];']);
                eval(['y',num2str(l),'.X=[y',num2str(l),'.X;SL(ind,:)];']);
                S(ind)=[]; %将S的集合中删去此时距离小于r的值
                SL(ind,:)=[]; %将SL的集合中删去此时距离小于r的值
                k=k+1; %均衡算法迭代次数加一
            end
        end
    end


3 程序结果

4 下载链接

见下方联系方式

相关实践学习
使用DAS实现数据库自动扩容和回缩
暂无
目录
打赏
0
1
1
0
55
分享
相关文章
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
127 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
34 15
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等