【Linux | C++ 】生产者消费者模型(Linux系统下C++ 代码模拟实现)

简介: 【Linux | C++ 】生产者消费者模型(Linux系统下C++ 代码模拟实现)

引言

多线程编程中的同步问题是一个普遍存在的难点,为了解决这些问题,开发者们设计出了各种同步机制,如条件变量、信号量、互斥锁等。生产者消费者模型是一个经典案例,它涉及到两类线程:生产者和消费者。本文将介绍如何使用条件变量来实现生产者消费者模型,帮助读者更好地理解多线程编程中的同步机制和技术。

一、生产者消费者问题

生产者线程负责生产数据或物品,并将它们放入一个共享缓冲区中。而消费者线程负责从缓冲区中获取这些数据或物品,并进行相应的处理。在这个过程中,需要保证生产者和消费者之间的正确协作和数据安全,以避免数据竞争和不可预测的结果。

为了解决这个问题,我们需要使用同步机制来协调两种类型的线程之间的操作。最常见的同步机制包括条件变量、信号量、互斥锁等。这些机制可以保证线程之间的正确协作和数据安全,避免数据竞争和死锁等问题的发生。

在生产者消费者问题中,同步机制的主要作用是保证缓冲区的数据安全和正确性。当缓冲区已满时,生产者线程需要等待一段时间,直到缓冲区有足够的空间可以放置新数据;而当缓冲区为空时,消费者线程需要等待一段时间,直到缓冲区有新数据可以获取。这种等待和通知的机制可以使用条件变量来实现。

🍁将生产者消费者模型比喻为超市的顾客和供货商

当我们将生产者消费者模型比喻为超市的顾客和供货商时,可以清晰地理解这一概念。假设超市是一个缓冲区,顾客是消费者,供货商是生产者。供货商不断地向超市提供新货物(产品),而顾客则从超市购买这些货物。在这个过程中,超市需要保证货物的充足和有序销售,而且顾客和供货商之间的操作需要协调。

在这个例子中,生产者不断地往超市里补充货物,当超市库存已满时,供货商需要等待一段时间,直到有空间放入新货物。而消费者则不断地从超市购买货物,当超市库存为空时,顾客需要等待新货物的到来。

⭕通过这个例子,我们可以清晰地看到生产者消费者模型中的关键概念:生产者负责生产物品并放入缓冲区,消费者负责从缓冲区获取物品并进行消费,而缓冲区则需要合理地协调生产者和消费者之间的操作,以避免过度生产或过度消费的情况发生。这种协调工作正是多线程编程中同步机制的核心应用之一。

🚨注意在使用条件变量等同步机制时,需要保证线程之间的正确协作,避免死锁和饥饿等问题的发生。同时,还需要考虑性能优化等问题,以提高程序的效率和响应速度

二、C++ queue模拟阻塞队列的生产消费模型(伪代码)

以下是使用C++实现基于std::queuestd::mutex的生产者消费者模型的示例代码:

#include <iostream>
#include <thread>
#include <queue>
#include <mutex>
#include <condition_variable>

std::queue<int> dataQueue;
std::mutex mtx;
std::condition_variable cv;

void producer()
{
    for (int i = 1; i <= 10; ++i) {
        std::this_thread::sleep_for(std::chrono::milliseconds(500)); // 模拟生产数据的耗时操作

        {
            std::lock_guard<std::mutex> lock(mtx);
            dataQueue.push(i);
            std::cout << "Produced: " << i << std::endl;
        }

        cv.notify_one(); // 通知消费者线程有新数据可用
    }
}

void consumer()
{
    while (true) {
        std::unique_lock<std::mutex> lock(mtx);

        // 使用条件变量等待,直到有新数据可用
        cv.wait(lock, [] { return !dataQueue.empty(); });

        int num = dataQueue.front();
        dataQueue.pop();
        std::cout << "Consumed: " << num << std::endl;

        lock.unlock();

        if (num == 10) {
            break; // 结束消费者线程,当消费到数字10时退出
        }
    }
}

int main()
{
    std::thread producerThread(producer);
    std::thread consumerThread(consumer);

    producerThread.join();
    consumerThread.join();

    return 0;
}

在这个示例中,生产者线程将数字从1到10放入std::queue中,而消费者线程从std::queue中取出这些数字进行消费。通过使用std::mutex和std::condition_variable,我们实现了线程之间的同步和通信。

生产者线程使用std::lock_guard<std::mutex>锁住互斥量,并将数据放入队列后通知消费者线程。消费者线程在等待条件变量时会解锁互斥量,以允许其他线程访问数据队列。当有新数据可用时,消费者线程被唤醒,并继续处理数据。

三、RAII风格的加锁方式

1. 简介

RAII(Resource Acquisition Is Initialization)是一种C++编程风格,通过在对象的构造函数中获取资源,在析构函数中释放资源,从而实现资源的自动管理。在多线程编程中,RAII可以用于实现加锁和解锁的自动管理,确保锁的正确释放,避免忘记手动解锁而导致的死锁或资源泄漏。

2. 示例

#include <iostream>
#include <thread>
#include <mutex>

class LockGuard {
public:
    explicit LockGuard(std::mutex& mtx) : mutex(mtx) {
        mutex.lock();
    }

    ~LockGuard() {
        mutex.unlock();
    }

private:
    std::mutex& mutex;
};

std::mutex mtx;

void someFunction() {
    LockGuard lock(mtx); // 在作用域中创建LockGuard对象,自动加锁

    // 执行需要加锁保护的操作
    std::cout << "Critical section" << std::endl;

    // 当LockGuard对象离开作用域时,会自动调用析构函数解锁
}

int main() {
    std::thread thread1(someFunction);
    std::thread thread2(someFunction);

    thread1.join();
    thread2.join();

    return 0;
}

在这个示例中,我们定义了一个名为LockGuard的RAII类,它在构造函数中获取一个std::mutex的引用,并在析构函数中调用unlock()来解锁互斥量。在someFunction()中,我们通过创建LockGuard对象来实现加锁和解锁操作。当LockGuard对象离开作用域时,其析构函数会自动被调用,从而释放互斥量。

通过使用RAII风格的加锁方式,我们可以确保在进入临界区之前加锁,在离开临界区之后自动解锁,避免了手动控制加锁和解锁操作可能带来的错误。同时,由于RAII对象的生命周期与作用域相对应,因此可以确保在任何情况下都会正确释放资源,即使在函数发生异常或提前返回时也不例外。这种方式简化了代码,提高了程序的可靠性和可读性。

四、基于Linux操作系统使用C++代码,采用RAII风格的加锁方式模拟“生产者消费者模型”

⭕Makefile文件

cp:ConProd.cc
  g++ -o $@ $^ -std=c++11 -lpthread
.PHONY:clean
clean:
  rm -f cp

⭕ . h 头文件

✅lockGuard.h

#pragma once

#include <iostream>
#include <pthread.h>

class Mutex
{
public:
    Mutex(pthread_mutex_t *mtx):pmtx_(mtx)
    {}

    // 加锁操作
    void lock() 
    {
        std::cout << "要进行加锁" << std::endl;
        pthread_mutex_lock(pmtx_);
    }

    // 解锁操作
    void unlock()
    {
        std::cout << "要进行解锁" << std::endl;
        pthread_mutex_unlock(pmtx_);
    }

    ~Mutex()
    {}
private:
    pthread_mutex_t *pmtx_; // 互斥锁指针
};

// RAII风格的加锁方式
class lockGuard
{
public:
    lockGuard(pthread_mutex_t *mtx):mtx_(mtx)
    {
        mtx_.lock(); // 构造时进行加锁操作
    }

    ~lockGuard()
    {
        mtx_.unlock(); // 析构时进行解锁操作
    }

private:
    Mutex mtx_; // 互斥锁对象
};

✅BlockQueue.h

#pragma once

#include <iostream>
#include <queue>
#include <mutex>
#include <pthread.h>
#include "lockGuard.h"
const int gDefaultCap = 5; // 队列默认容量

template <class T>
class BlockQueue
{
private:
    bool isQueueEmpty() // 判断队列是否为空
    {
        return bq_.size() == 0;
    }
    bool isQueueFull() // 判断队列是否已满
    {
        return bq_.size() == capacity_;
    }

public:
    BlockQueue(int capacity = gDefaultCap) : capacity_(capacity)
    {
        // 初始化互斥锁和条件变量
        pthread_mutex_init(&mtx_, nullptr);
        pthread_cond_init(&Empty_, nullptr);
        pthread_cond_init(&Full_, nullptr);
    }

    void push(const T &in) // 生产者线程调用此函数向队列中添加元素
    {
        lockGuard lockgrard(&mtx_); // 自动调用构造函数,对互斥锁进行加锁

        while (isQueueFull()) // 如果队列已满,则阻塞当前线程,等待队列有空闲位置
            pthread_cond_wait(&Full_, &mtx_);

        bq_.push(in); // 将元素添加到队列尾部
        pthread_cond_signal(&Empty_); // 对等待在 Empty_ 上的线程发送信号,表示队列非空
    }

    void pop(T *out) // 消费者线程调用此函数从队列中取出元素
    {
        lockGuard lockguard(&mtx_); // 自动调用构造函数,对互斥锁进行加锁

        while (isQueueEmpty()) // 如果队列为空,则阻塞当前线程,等待队列有元素
            pthread_cond_wait(&Empty_, &mtx_);

        *out = bq_.front(); // 取出队头元素
        bq_.pop(); // 将元素从队列中删除
        pthread_cond_signal(&Full_); // 对等待在 Full_ 上的线程发送信号,表示队列未满
    }

    ~BlockQueue()
    {
        // 销毁互斥锁和条件变量
        pthread_mutex_destroy(&mtx_);
        pthread_cond_destroy(&Empty_);
        pthread_cond_destroy(&Full_);
    }

private:
    std::queue<T> bq_;     // 阻塞队列
    int capacity_;         // 容量上限
    pthread_mutex_t mtx_;  // 通过互斥锁保证队列安全
    pthread_cond_t Empty_; // 用它来表示队列是否空的条件
    pthread_cond_t Full_;  // 用它来表示队列是否满的条件
};

✅Task.h

#pragma once

#include <iostream>
#include <functional>

typedef std::function<int(int, int)> func_t;

class Task
{
public:
    // 默认构造函数
    Task() {}

    // 构造函数,初始化任务的参数和可调用对象
    Task(int x, int y, func_t func) : x_(x), y_(y), func_(func) {}

    // 重载函数调用运算符,用于执行任务
    int operator()()
    {
        return func_(x_, y_);
    }

public:
    int x_;         // 任务的参数 x
    int y_;         // 任务的参数 y
    func_t func_;   // 可调用对象,接受两个整数并返回一个整数
};

⭕ . cpp 文件

✅ConProd.cpp

#include "BlockQueue.h"
#include "Task.h"

#include <pthread.h>
#include <unistd.h>
#include <ctime>

// 定义一个加法函数,用于任务的处理
int myAdd(int x, int y)
{
    return x + y;
}

// 消费者线程函数,从阻塞队列中获取任务并完成任务
void* consumer(void *args)
{
    // 将参数转化为阻塞队列的指针
    BlockQueue<Task> *bqueue = (BlockQueue<Task> *)args;

    while(true)
    {
        // 获取任务
        Task t;
        bqueue->pop(&t);

        // 完成任务,并输出结果
        std::cout << pthread_self() <<" consumer: "<< t.x_ << "+" << t.y_ << "=" << t() << std::endl;
    }

    return nullptr;
}

// 生产者线程函数,制作任务并将任务加入阻塞队列
void* productor(void *args)
{
    // 将参数转化为阻塞队列的指针
    BlockQueue<Task> *bqueue = (BlockQueue<Task> *)args;

    while(true)
    {
        // 制作任务
        int x = rand()%10 + 1;
        usleep(rand()%1000);
        int y = rand()%5 + 1;
        Task t(x, y, myAdd);

        // 生产任务,并输出提示信息
        bqueue->push(t);
        std::cout <<pthread_self() <<" productor: "<< t.x_ << "+" << t.y_ << "=?" << std::endl;

        // 限制生产者的速度,以便观察阻塞队列的功能
        sleep(1);
    }

    return nullptr;
}

int main()
{
    // 随机数种子初始化
    srand((uint64_t)time(nullptr) ^ getpid() ^ 0x32457);

    // 创建一个阻塞队列
    BlockQueue<Task> *bqueue = new BlockQueue<Task>();

    // 创建两个消费者线程和两个生产者线程
    pthread_t c[2],p[2];
    pthread_create(c, nullptr, consumer, bqueue);
    pthread_create(c + 1, nullptr, consumer, bqueue);
    pthread_create(p, nullptr, productor, bqueue);
    pthread_create(p + 1, nullptr, productor, bqueue);

    // 等待所有线程结束
    pthread_join(c[0], nullptr);
    pthread_join(c[1], nullptr);
    pthread_join(p[0], nullptr);
    pthread_join(p[1], nullptr);

    // 释放阻塞队列内存
    delete bqueue;

    return 0;
}

温馨提示

感谢您对博主文章的关注与支持!如果您喜欢这篇文章,可以点赞、评论和分享给您的同学,这将对我提供巨大的鼓励和支持。另外,我计划在未来的更新中持续探讨与本文相关的内容。我会为您带来更多关于Linux以及C++编程技术问题的深入解析、应用案例和趣味玩法等。如果感兴趣的话可以关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。我们期待与您建立更紧密的互动,共同探索Linux、C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!

目录
相关文章
|
1月前
|
网络协议 安全 Linux
Linux C/C++之IO多路复用(select)
这篇文章主要介绍了TCP的三次握手和四次挥手过程,TCP与UDP的区别,以及如何使用select函数实现IO多路复用,包括服务器监听多个客户端连接和简单聊天室场景的应用示例。
91 0
|
1月前
|
存储 Linux C语言
Linux C/C++之IO多路复用(aio)
这篇文章介绍了Linux中IO多路复用技术epoll和异步IO技术aio的区别、执行过程、编程模型以及具体的编程实现方式。
86 1
Linux C/C++之IO多路复用(aio)
|
20天前
|
Ubuntu Linux Shell
Linux 系统中的代码类型或脚本类型内容
在 Linux 系统中,代码类型多样,包括 Shell 脚本、配置文件、网络配置、命令行工具和 Cron 定时任务。这些代码类型广泛应用于系统管理、自动化操作、网络配置和定期任务,掌握它们能显著提高系统管理和开发的效率。
|
1月前
|
Ubuntu Linux 编译器
Linux/Ubuntu下使用VS Code配置C/C++项目环境调用OpenCV
通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。
297 3
|
1月前
|
资源调度 Linux 调度
Linux C/C++之线程基础
这篇文章详细介绍了Linux下C/C++线程的基本概念、创建和管理线程的方法,以及线程同步的各种机制,并通过实例代码展示了线程同步技术的应用。
29 0
Linux C/C++之线程基础
|
1月前
|
Linux C++
Linux C/C++之IO多路复用(poll,epoll)
这篇文章详细介绍了Linux下C/C++编程中IO多路复用的两种机制:poll和epoll,包括它们的比较、编程模型、函数原型以及如何使用这些机制实现服务器端和客户端之间的多个连接。
24 0
Linux C/C++之IO多路复用(poll,epoll)
|
1月前
|
网络协议 Linux 网络性能优化
Linux C/C++之TCP / UDP通信
这篇文章详细介绍了Linux下C/C++语言实现TCP和UDP通信的方法,包括网络基础、通信模型、编程示例以及TCP和UDP的优缺点比较。
37 0
Linux C/C++之TCP / UDP通信
|
1月前
|
消息中间件 Linux API
Linux c/c++之IPC进程间通信
这篇文章详细介绍了Linux下C/C++进程间通信(IPC)的三种主要技术:共享内存、消息队列和信号量,包括它们的编程模型、API函数原型、优势与缺点,并通过示例代码展示了它们的创建、使用和管理方法。
32 0
Linux c/c++之IPC进程间通信
|
1月前
|
Linux C++
Linux c/c++进程间通信(1)
这篇文章介绍了Linux下C/C++进程间通信的几种方式,包括普通文件、文件映射虚拟内存、管道通信(FIFO),并提供了示例代码和标准输入输出设备的应用。
28 0
Linux c/c++进程间通信(1)
|
1月前
|
Linux C++
Linux c/c++进程之僵尸进程和守护进程
这篇文章介绍了Linux系统中僵尸进程和守护进程的概念、产生原因、解决方法以及如何创建守护进程。
21 0