Linux/Ubuntu下使用VS Code配置C/C++项目环境调用OpenCV

简介: 通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。

在Linux(以Ubuntu为例)环境下,使用Visual Studio Code(简称VS Code)配置C/C++项目以调用OpenCV库,需要经过几个关键步骤。以下是详细的操作指南,旨在帮助您顺利设置开发环境。

1. 安装必要的软件包

安装VS Code

首先确保您已经安装了VS Code。如果尚未安装,可以通过终端命令安装:

sudo apt update
sudo apt install code
​

安装GCC/G++编译器

OpenCV的C++开发需要GCC/G++编译器。通常Ubuntu系统自带这些编译器,但如果没有,可以通过以下命令安装:

sudo apt install build-essential
​

2. 安装CMake

OpenCV的编译和安装依赖于CMake。使用以下命令安装CMake:

sudo apt install cmake
​

3. 下载并编译OpenCV

下载OpenCV源代码

访问OpenCV官方网站或GitHub仓库下载最新版的OpenCV和OpenCV_contrib源代码。假设您下载到了 ~/Downloads目录下:

cd ~/Downloads
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zip
wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.x.zip
unzip opencv.zip
unzip opencv_contrib.zip
mv opencv-4.x opencv
mv opencv_contrib-4.x opencv_contrib
​

请将上述命令中的 4.x替换为实际版本号。

配置与编译

创建一个构建目录并进入:

mkdir build && cd build
​

使用CMake配置OpenCV,确保指定了OpenCV_contrib的位置:

cmake -D CMAKE_BUILD_TYPE=RELEASE \
      -D CMAKE_INSTALL_PREFIX=/usr/local \
      -D OPENCV_EXTRA_MODULES_PATH=~/Downloads/opencv_contrib/modules \
      -D ENABLE_NEON=ON \
      -D ENABLE_VFPV3=ON \
      -D BUILD_TESTS=OFF \
      -D INSTALL_PYTHON_EXAMPLES=OFF \
      -D OPENCV_GENERATE_PKGCONFIG=ON \
      -D BUILD_EXAMPLES=OFF ..
​

之后,编译并安装OpenCV:

make -j$(nproc)
sudo make install
sudo ldconfig
​

4. 配置VS Code

安装C/C++插件

在VS Code中,打开扩展市场,搜索并安装“C/C++”插件,该插件由Microsoft提供,用于增强C/C++语言支持。

创建工作区和项目

在您想要存放项目的目录下,创建一个新的文件夹,然后在VS Code中通过“文件 -> 打开文件夹...”打开此目录。

配置c_cpp_properties.json

在工作区中,通过 .vscode目录下的 c_cpp_properties.json文件配置编译器路径和包含目录:

{
    "configurations": [
        {
            "name": "Linux",
            "includePath": [
                "${workspaceFolder}/**",
                "/usr/local/include",
                "/usr/local/include/opencv4"
            ],
            "defines": [],
            "compilerPath": "/usr/bin/g++",
            "cStandard": "c11",
            "cppStandard": "c++17",
            "intelliSenseMode": "gcc-x64"
        }
    ],
    "version": 4
}
​

配置tasks.json

为了方便编译和运行程序,创建一个 tasks.json文件来定义编译任务:

{
    "version": "2.0.0",
    "tasks": [
        {
            "type": "shell",
            "label": "Build with g++",
            "command": "/usr/bin/g++",
            "args": [
                "-g",
                "${file}",
                "-o",
                "${fileDirname}/${fileBasenameNoExtension}",
                "-I/usr/local/include/opencv4",
                "-L/usr/local/lib",
                "-lopencv_core",
                "-lopencv_highgui",
                "-lopencv_imgproc"
            ],
            "options": {
                "cwd": "${workspaceFolder}"
            },
            "problemMatcher": ["$gcc"],
            "group": {
                "kind": "build",
                "isDefault": true
            }
        }
    ]
}
​

配置launch.json

为了调试,配置 launch.json文件:

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "C++ Launch (GDB)",
            "type": "cppdbg",
            "request": "launch",
            "program": "${fileDirname}/${fileBasenameNoExtension}",
            "args": [],
            "stopAtEntry": false,
            "cwd": "${workspaceFolder}",
            "environment": [],
            "externalConsole": true,
            "MIMode": "gdb",
            "setupCommands": [
                {
                    "description": "Enable pretty-printing for gdb",
                    "text": "-enable-pretty-printing",
                    "ignoreFailures": true
                }
            ],
            "preLaunchTask": "Build with g++"
        }
    ]
}
​

5. 测试项目

现在,您可以编写一个简单的OpenCV测试程序,比如显示一张图片:

#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char** argv) {
    cv::Mat img = cv::imread("test.jpg");
    if(img.empty()) {
        std::cout << "Could not open or find the image" << std::endl;
        return -1;
    }
    cv::imshow("Display window", img);
    cv::waitKey(0); // Wait for a keystroke in the window
    return 0;
}
​

保存文件后,按下F5启动调试,如果一切配置正确,您应该能看到图像显示窗口。

通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。

目录
相关文章
|
2月前
|
存储 Linux C语言
Linux C/C++之IO多路复用(aio)
这篇文章介绍了Linux中IO多路复用技术epoll和异步IO技术aio的区别、执行过程、编程模型以及具体的编程实现方式。
106 1
Linux C/C++之IO多路复用(aio)
|
4天前
|
Ubuntu 开发工具 C++
Ubuntu 22.04上编译安装c++ libconfig library
通过本文的介绍,我们详细讲解了如何在Ubuntu 22.04上编译和安装libconfig库,并通过编写和运行一个简单的测试程序来验证安装是否成功。libconfig库的安装过程相对简单,主要包括环境准备、下载源码、编译和安装几个步骤。希望本文对您在项目中使用libconfig库有所帮助。
34 14
|
2月前
|
Ubuntu
Ubuntu学习笔记(七):ubuntu下jupyter指定虚拟环境
本文介绍了如何在Ubuntu系统下使用Anaconda和Jupyter Notebook指定并切换不同的虚拟环境。
108 0
Ubuntu学习笔记(七):ubuntu下jupyter指定虚拟环境
|
2月前
|
资源调度 Linux 调度
Linux C/C++之线程基础
这篇文章详细介绍了Linux下C/C++线程的基本概念、创建和管理线程的方法,以及线程同步的各种机制,并通过实例代码展示了线程同步技术的应用。
33 0
Linux C/C++之线程基础
|
Ubuntu Java Linux
【Linux技术】ubuntu常用命令【转】
转自:http://www.cnblogs.com/lcw/p/3159462.html   查看软件xxx安装内容:dpkg -L xxx查找软件库中的软件:apt-cache search 正则表达式查找软件库中的软件:aptitude search 软件包查找文件属于哪个包:dpkg -S...
1071 0
|
1月前
|
Linux 网络安全 数据安全/隐私保护
Linux 超级强大的十六进制 dump 工具:XXD 命令,我教你应该如何使用!
在 Linux 系统中,xxd 命令是一个强大的十六进制 dump 工具,可以将文件或数据以十六进制和 ASCII 字符形式显示,帮助用户深入了解和分析数据。本文详细介绍了 xxd 命令的基本用法、高级功能及实际应用案例,包括查看文件内容、指定输出格式、写入文件、数据比较、数据提取、数据转换和数据加密解密等。通过掌握这些技巧,用户可以更高效地处理各种数据问题。
95 8
|
1月前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
265 6
|
1月前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
80 3
|
1月前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
72 2
下一篇
DataWorks