Linux/Ubuntu下使用VS Code配置C/C++项目环境调用OpenCV

简介: 通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。

在Linux(以Ubuntu为例)环境下,使用Visual Studio Code(简称VS Code)配置C/C++项目以调用OpenCV库,需要经过几个关键步骤。以下是详细的操作指南,旨在帮助您顺利设置开发环境。

1. 安装必要的软件包

安装VS Code

首先确保您已经安装了VS Code。如果尚未安装,可以通过终端命令安装:

sudo apt update
sudo apt install code
​

安装GCC/G++编译器

OpenCV的C++开发需要GCC/G++编译器。通常Ubuntu系统自带这些编译器,但如果没有,可以通过以下命令安装:

sudo apt install build-essential
​

2. 安装CMake

OpenCV的编译和安装依赖于CMake。使用以下命令安装CMake:

sudo apt install cmake
​

3. 下载并编译OpenCV

下载OpenCV源代码

访问OpenCV官方网站或GitHub仓库下载最新版的OpenCV和OpenCV_contrib源代码。假设您下载到了 ~/Downloads目录下:

cd ~/Downloads
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zip
wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.x.zip
unzip opencv.zip
unzip opencv_contrib.zip
mv opencv-4.x opencv
mv opencv_contrib-4.x opencv_contrib
​

请将上述命令中的 4.x替换为实际版本号。

配置与编译

创建一个构建目录并进入:

mkdir build && cd build
​

使用CMake配置OpenCV,确保指定了OpenCV_contrib的位置:

cmake -D CMAKE_BUILD_TYPE=RELEASE \
      -D CMAKE_INSTALL_PREFIX=/usr/local \
      -D OPENCV_EXTRA_MODULES_PATH=~/Downloads/opencv_contrib/modules \
      -D ENABLE_NEON=ON \
      -D ENABLE_VFPV3=ON \
      -D BUILD_TESTS=OFF \
      -D INSTALL_PYTHON_EXAMPLES=OFF \
      -D OPENCV_GENERATE_PKGCONFIG=ON \
      -D BUILD_EXAMPLES=OFF ..
​

之后,编译并安装OpenCV:

make -j$(nproc)
sudo make install
sudo ldconfig
​

4. 配置VS Code

安装C/C++插件

在VS Code中,打开扩展市场,搜索并安装“C/C++”插件,该插件由Microsoft提供,用于增强C/C++语言支持。

创建工作区和项目

在您想要存放项目的目录下,创建一个新的文件夹,然后在VS Code中通过“文件 -> 打开文件夹...”打开此目录。

配置c_cpp_properties.json

在工作区中,通过 .vscode目录下的 c_cpp_properties.json文件配置编译器路径和包含目录:

{
    "configurations": [
        {
            "name": "Linux",
            "includePath": [
                "${workspaceFolder}/**",
                "/usr/local/include",
                "/usr/local/include/opencv4"
            ],
            "defines": [],
            "compilerPath": "/usr/bin/g++",
            "cStandard": "c11",
            "cppStandard": "c++17",
            "intelliSenseMode": "gcc-x64"
        }
    ],
    "version": 4
}
​

配置tasks.json

为了方便编译和运行程序,创建一个 tasks.json文件来定义编译任务:

{
    "version": "2.0.0",
    "tasks": [
        {
            "type": "shell",
            "label": "Build with g++",
            "command": "/usr/bin/g++",
            "args": [
                "-g",
                "${file}",
                "-o",
                "${fileDirname}/${fileBasenameNoExtension}",
                "-I/usr/local/include/opencv4",
                "-L/usr/local/lib",
                "-lopencv_core",
                "-lopencv_highgui",
                "-lopencv_imgproc"
            ],
            "options": {
                "cwd": "${workspaceFolder}"
            },
            "problemMatcher": ["$gcc"],
            "group": {
                "kind": "build",
                "isDefault": true
            }
        }
    ]
}
​

配置launch.json

为了调试,配置 launch.json文件:

{
    "version": "0.2.0",
    "configurations": [
        {
            "name": "C++ Launch (GDB)",
            "type": "cppdbg",
            "request": "launch",
            "program": "${fileDirname}/${fileBasenameNoExtension}",
            "args": [],
            "stopAtEntry": false,
            "cwd": "${workspaceFolder}",
            "environment": [],
            "externalConsole": true,
            "MIMode": "gdb",
            "setupCommands": [
                {
                    "description": "Enable pretty-printing for gdb",
                    "text": "-enable-pretty-printing",
                    "ignoreFailures": true
                }
            ],
            "preLaunchTask": "Build with g++"
        }
    ]
}
​

5. 测试项目

现在,您可以编写一个简单的OpenCV测试程序,比如显示一张图片:

#include <opencv2/opencv.hpp>
#include <iostream>

int main(int argc, char** argv) {
    cv::Mat img = cv::imread("test.jpg");
    if(img.empty()) {
        std::cout << "Could not open or find the image" << std::endl;
        return -1;
    }
    cv::imshow("Display window", img);
    cv::waitKey(0); // Wait for a keystroke in the window
    return 0;
}
​

保存文件后,按下F5启动调试,如果一切配置正确,您应该能看到图像显示窗口。

通过以上步骤,您已经成功在Ubuntu系统下的VS Code中配置了C/C++项目环境,并能够调用OpenCV库进行开发。请确保每一步都按照您的系统实际情况进行适当调整。

目录
相关文章
|
3月前
|
Ubuntu Linux 网络安全
Linux服务器之Ubuntu的安装与配置
Ubuntu Desktop是目前最成功、最流行的图形界面的Linux发行版;而Ubuntu Server也在服务器端市场占据了较大的份额。今天为大家详细介绍了Ubuntu Server的安装与配置,希望对你能有所帮助。关于VMware、VirtualBox等虚拟化软件的使用,朱哥还会在后续的文章中为大家详细介绍,敬请关注!
|
29天前
|
存储 Linux 开发工具
Linux环境下使用Buildroot配置软件包
使用Buildroot可以大大简化嵌入式Linux系统的开发和维护工作,但它需要对Linux系统和交叉编译有深入的理解。通过上述步骤,可以有效地配置和定制软件包,为特定的嵌入式应用构建高效、稳定的系统。
161 11
|
4月前
|
Kubernetes Linux 网络安全
Rocky Linux 8.9配置Kubernetes集群详解,适用于CentOS环境
初始化成功后,记录下显示的 `kubeadm join`命令。
253 0
|
5月前
|
Linux 网络安全 开发工具
在Linux下配置gitee与Github的远程仓库
注意,git push后,是输入你的账号与密码。这个步骤可以通过特殊设置省去,但是一开始还是不要太省。
308 0
|
3月前
|
Ubuntu 网络安全 PHP
如何使用vscode的Docker插件管理ubuntu 拉取服务器的镜像以及创建容器
本测试镜像旨在记录使用vscode的Docker插件拉取病创建Dockerfile,以及拉取镜像。
|
12月前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
1652 1
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
|
iOS开发 MacOS
【Mac系统】解决Vscode中LeetCode插件不能刷剑指offer题库
文章讨论了解决Mac系统中Vscode里LeetCode插件无法刷剑指Offer题库的问题,并提供了一些相关的使用技巧和资源链接。
764 1
|
7月前
|
JavaScript 前端开发 程序员
甚至用不了五分钟就能学会vscode插件开发
本文介绍了VSCode插件的开发流程,从创建项目到最终发布。首先通过安装`yo`和`generator-code`脚手架工具初始化项目,选择JavaScript语言配置基础信息。接着,在`extension.js`中实现业务逻辑,例如将中文“变量”替换为“var”。通过F5进入调试模式验证功能。完成后使用`vsce`工具进行打包,解决可能遇到的版本不兼容或README文档问题。最后生成`.vsix`文件,可通过VSCode的“从VSIX安装”加载插件,实现开发闭环。进一步可将插件发布至官方市场供更多开发者使用。
|
9月前
|
人工智能 自然语言处理 前端开发
通义灵码插件在VSCode中的运用
借助通义灵码插件在VSCode构建新闻网,实现效率与智能的融合。VSCode作为前端开发的“瑞士军刀”,提供实时预览、智能辅助和高效管理功能;通义灵码插件通过自然语言交互生成代码,简化复杂任务并优化代码质量。两者结合形成从设计到部署的高效闭环,大幅减少基础编码时间,降低开发门槛,助力开发者聚焦业务逻辑与创新。