R语言神经网络模型金融应用预测上证指数时间序列可视化

简介: R语言神经网络模型金融应用预测上证指数时间序列可视化

本文旨在利用神经网络模型来帮助客户预测上证指数的收盘价,通过分析不同历史数据作为输入,建立模型并进行预测点击文末“阅读原文”获取完整代码数据

相关视频

image.png

image.png


具体而言,我们设计了两个不同的模型,分别使用不同组合的历史收盘价数据作为输入,以比较它们在预测今天的收盘价方面的效果。

获取上证指数数据

首先,我们获取了上证指数的数据,并进行了必要的数据处理,将列名命名为"Open"、"High"、"Low"、"Close"、"Volume"和"Adjusted"。下面是上证指数数据的前几行示例:

names(df)<-c("Open","High","Low","Close","Volume","Adjusted")  
head(df)

f5c9411c09164ff7a86e9fa62dd3d089.png

绘制指数走势

接着,我们绘制了上证指数的走势图,以直观展示指数的波动情况和趋势变化:

a2e3ce7c09431a297b07e072099191b3.png

模型一

在模型一中,我们使用昨天和前天的收盘价作为输入数据,建立神经网络模型来预测今天的收盘价。首先,我们生成训练数据,将收盘价和前两天的数据整合到一个数据框中:

获取滞后数据。

当为时间滞后效应移动列时,某些行将包含 NA(非数字)值。

将收盘价和昨天与前天的数据放到一个数据,并且使用昨天和前天的收盘价建立神经网络模型,预测今天的收盘。

# 生成训练数据
train <- data.frame(  
  Close=prices$Close,  
  prev_Close_1=shift(prices$Close, 1),

f1275bc8190e44ab61b46227b54a1b55.png

建立神经网络模型

ralnet(  
  formula=Close ~ prev_Close_1 + prev_Cl

然后,我们使用昨天和前天的收盘价建立神经网络模型,并进行预测。最终,我们绘制了实际数据和预测数据的对比图,以评估模型的预测效果。

194a461b6f7d1a45a87cd5db8e6277e8.png

模型二

在模型二中,我们使用昨天、前天和大前天的收盘价作为输入数据,建立神经网络模型来预测今天的收盘价。同样,我们生成训练数据,并建立神经网络模型进行预测。然后,我们绘制了模型二的预测结果与实际数据的对比图。

更新模型,使用昨天前天和大前天的收盘价来预测今天的收盘价,并且建立神经网络模型

建立神经网络模型

nn <- neura(  
....
)

绘制预测点和实际数据的对比

27c43611940d8bf4870c6dd1e30f9de9.png

从图中可以看到红色为模型一的预测 ,蓝色为模型二的预测。从图的直观对比来看,红色更接近实际的收盘价,因此模型的拟合效果更好。

通过对比模型一和模型二的预测结果图,我们发现模型一的预测更接近实际收盘价,表明模型一的拟合效果更好。这提示我们在选择输入数据时,需根据具体情况灵活调整,以提高预测的准确性。

此外,我们还绘制了神经网络模型的拓扑图,展示了模型的结构和神经元之间的连接关系:

然后绘制神经网络拓扑图

9afb21f94d92be03ebb1438d827b3fc6.png

从图中可以看出,该神经网络模型共有四层,包括输入节点、隐藏层和输出节点。输入节点代表昨天和前天的收盘价数据,隐藏层用于处理和学习数据,输出节点用于预测今天的收盘价。通过学习历史数据,神经网络模型可以更好地预测未来数据,为投资者和分析师提供更准确的决策依据。

综上所述,本文通过神经网络模型预测上证指数收盘价,展示了神经网络在金融数据分析中的应用。不同的输入数据和模型参数选择将影响预测结果,帮助人们更好地理解市场走势,做出更明智的决策。神经网络模型在金融领域的应用前景广阔,将在未来发挥更重要的作用,助力人们更好地适应复杂多变的市场环境。

相关文章
|
3天前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
|
11天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
1月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
83 2
|
1月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
111 1
|
2月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
115 4
网络协议与IO模型
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
97 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
1月前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
开发者
什么是面向网络的IO模型?
【10月更文挑战第6天】什么是面向网络的IO模型?
23 3
下一篇
DataWorks