【R语言实战】聚类分析及可视化

简介: 【R语言实战】聚类分析及可视化

洛杉矶街区数据(LA.Neihborhoods.csv) 这是美国普查局2000年的数据。一共有110个街区,15个变量。变量情况见下表。表中API为涉及学生成绩的Academic Performance Index的缩写。增加单位面积下的人口数(变量名density),试对修改后的数据按照income,age,homes,white和density的数据进行系统聚类和Kmeans聚类分析(分成5类),并根据所分类别和每个街区的经纬度,把各个类用不同的符号画图进行可视化。

1 系统聚类及可视化

  运行代码:

w=read.csv("E://mvstats5/data/LA.Neighborhoods.csv")#读入数据
w=data.frame(w,density=w$Population/w$Area)#增加人口密度变量
u=w[,c(1,2,5,6,11,16)]#选择变量
hw=hclust(dist(scale(u[,-1])), "ward.D2") #对标准化的数据做分层聚类, 聚类方法选的"ward.D2"
plot(hw,labels=u[,1],cex=0.6)#画树状图
id=identify(hw)#手工分成5份
rect.hclust(hw,5)

  运行结果:

2 KMeans聚类及可视化

  运行代码:

a=kmeans(scale(u[,-1]),5);ppp=c(7,17,19,21)
plot(w[a$cluster==1,14:15],pch=1,col=1,xlim=c(-118.7,-118.2),ylim=c(33.73,34.32),main="Los Angeles")
for(i in 2:5){
  points(w[a$cluster==i,14:15],pch=ppp[i-1],col=2:5)
  legend("bottomleft",pch=c(1,ppp),paste("Cluster",1:4))
}

  运行结果:

相关文章
|
1月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
1月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
1月前
【R语言实战】——fGARCH包在金融时序上的模拟应用
【R语言实战】——fGARCH包在金融时序上的模拟应用
|
1月前
|
数据可视化
【R语言实战】——金融时序分布拟合
【R语言实战】——金融时序分布拟合
|
1月前
|
数据可视化 算法
【R语言实战】——kNN和朴素贝叶斯方法实战
【R语言实战】——kNN和朴素贝叶斯方法实战
|
1月前
【R语言实战】——Logistic回归模型
【R语言实战】——Logistic回归模型
|
1月前
|
数据可视化
【R语言实战】——金融时序ARIMA建模
【R语言实战】——金融时序ARIMA建模
|
1月前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
1月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
1月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为

热门文章

最新文章