Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

简介: Python用Lstm神经网络、离散小波转换DWT降噪对中压电网电压时间序列预测

全文链接:http://tecdat.cn/?p=31149


对于电力公司来说,对局部放电的准确预测可以显著降低人力物力成本。据调查,80%的输电设备损坏是随机发生的,而只有20%由于老化

而损坏案例中又有85%是由于局部放电现象的发生。电厂98%的维护费用于支付维修师的薪资。因此,准确的预测电网的电压变化并预测局部放电现象的发生,可以极大的降低维修师的工作效率并降低维护成本。

相关视频

N37R@Y6VQAF$76D_0ZL[LK9.png

RQSESNK_`FZANIN0Y$J}QC8.png

解决方案

任务 / 目标

根据电力公司提出的要求,利用电压数据对电网电压进行电压预测。

数据源准备

数据源来自电力公司的电网监测系统,他们记录了电网位置( id_measurement ):用于记录电网的地理位置。信号( signal_id ):每个 signal_id 包含 20 毫秒内的 800 000 个电压数据。相( phase ):用于标记设备的相。目标( target ):用于标记设备是否发生局部放电。

L[[)V]K{BFIHH9H7_B0OWCS.png


点击标题查阅往期内容


CP}]01~BKX}U(}]E}XL0I~3.png

分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测

左右滑动查看更多

01

JF)W])17(6AK`BPSW$I0`Y2.png

02

1(L@_4I2F4(P5TPMAJKQQ2D.png

03

M0F7U4V$(WT(%MMF3_MOPEP.png

04

V%FU$6B@ZBEGLF)W@K_@5BJ.png



特征转换

对每段id_mesurement的三相电压值求和,正常情况下,在同一时间的三相电压和为零。以用于辅助判断是否发生局部放电。

构造

数据集结构如下

]3$M7EUX5YHX5@_FHP72C$2.png

划分训练集和测试集

因为数据集包含20毫秒内的压力变化,因此以时间顺序将前75%划分为训练集,后25%为测试集。

建模

长短期记忆模型(LSTM)

一种特殊结构的循环神经网络,适用于时间序列数据的预测,建立较大的深度神经网络。

模型优化

数据降噪

电压数据来自现实世界,因此存在许多噪点,利用离散小波转换(DWT)对电压数据进行降噪,使正常电压数据归于平稳,局部放电现象更易被察觉。

1V9EMY@HFO411@NZF__`_)4.png

项目结果

利用Lstm很好的对未来电压值进行了预测,预测准确率达到85.3%。

但是,即使对于Lstm,序列的长度仍然太长了(200-300更佳),若能对数据序列进行压缩,有可能得到更好的预测结果。

关于作者

在此对Yuxuan Xia对本文所作的贡献表示诚挚感谢,他毕业于西北大学,专长深度学习、推荐算法、决策分析。


相关文章
|
1天前
|
存储 缓存 安全
Python元组不可变序列的奥秘与应用方式
Python 中的元组(Tuple)是一种有序的、不可变的数据结构,它是序列的一种特殊形式,就像一个固定大小的盒子,一旦放入物品就无法更换或移除。 元组可以包含任何类型的数据,如数字、字符串甚至是其他元组。 相比列表,元组在很多场景下提供了更高效、安全的选择。
|
2天前
|
JSON 数据挖掘 API
在会议系统工程中,Python可以用于多种任务,如网络请求(用于视频会议的连接和会议数据的传输)、数据分析(用于分析会议参与者的行为或会议效果)等。
在会议系统工程中,Python可以用于多种任务,如网络请求(用于视频会议的连接和会议数据的传输)、数据分析(用于分析会议参与者的行为或会议效果)等。
33 0
|
4天前
|
网络协议 安全 Shell
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
`nmap`是一个开源的网络扫描工具,用于发现网络上的设备和服务。Python的`python-nmap`库允许我们在Python脚本中直接使用`nmap`的功能。
27 7
|
4天前
|
数据可视化 Python
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
时间序列分析是一种统计方法,用于分析随时间变化的数据序列。在金融、经济学、气象学等领域,时间序列分析被广泛用于预测未来趋势、检测异常值、理解周期性模式等。在Python中,`statsmodels`模块是一个强大的工具,用于执行各种时间序列分析任务。
8 0
|
4天前
|
网络协议 安全 Python
我们将使用Python的内置库`http.server`来创建一个简单的Web服务器。虽然这个示例相对简单,但我们可以围绕它展开许多讨论,包括HTTP协议、网络编程、异常处理、多线程等。
我们将使用Python的内置库`http.server`来创建一个简单的Web服务器。虽然这个示例相对简单,但我们可以围绕它展开许多讨论,包括HTTP协议、网络编程、异常处理、多线程等。
10 0
|
4天前
|
网络协议 Python
在Python中,我们使用`socket`模块来进行网络通信。首先,我们需要导入这个模块。
在Python中,我们使用`socket`模块来进行网络通信。首先,我们需要导入这个模块。
6 0
|
6天前
|
存储 算法 Python
Python图论实战:从零基础到精通DFS与BFS遍历,轻松玩转复杂网络结构
【7月更文挑战第11天】图论在数据科学中扮演关键角色,用于解决复杂网络问题。Python因其易用性和库支持成为实现图算法的首选。本文通过问答形式介绍DFS和BFS,图是节点和边的数据结构,遍历用于搜索和分析。Python中图可表示为邻接表,DFS用递归遍历,BFS借助队列。DFS适用于深度探索,BFS则用于最短路径。提供的代码示例帮助理解如何在Python中应用这两种遍历算法。开始探索图论,解锁更多技术可能!
23 6
|
7天前
|
机器学习/深度学习 数据采集 算法
Python实现Prophet时间序列数据建模与异常值检测(Prophet算法)项目实战
Python实现Prophet时间序列数据建模与异常值检测(Prophet算法)项目实战
|
7天前
|
机器学习/深度学习 数据采集 算法
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
|
8天前
|
机器学习/深度学习 数据采集 算法
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战
47 19

热门文章

最新文章