Python爬虫系列9-非诚勿扰等婚恋网数据批量抓取!

简介: 一般当大家遇到不顺心的时候,总是会焦虑,抱怨,我知道,这也是人软弱的一面,但是我们越是遇到困难,越是要振作起来,不要放弃自己,然后悄悄努力,只有这样才能让自己越来越好,如果一直沉浸在痛苦中,只会越来越糟。适当的逼一逼自己,你会发现,人的潜力是无限的。

-实战

今天要采集的网站是 https://www.baihe.com/home.shtml

image.png

image.png

第一步:分析目标网站,找到需要抓取的内容,请求网页

image.png

点击每一个相亲妹子后会进入详情页,我先将需要抓取的数据字段标注出来;
image.png

image.png

好了;以上就是我们接下来要抓取的字段;通过F12【抓包工具】分析网页结构,进行数据请求
image.png

经过我们分析,发现这些所有的id是每个展示妹子的详情页的编号。这里第一步的代码我会通过工具复制生成;详情使用可以参考我前面写的爬虫博客,里面有详细的介绍。

import requests


cookies = {
    'nTalk_CACHE_DATA': '{uid:kf_9847_ISME9754_307535896,tid:1653465759744600}',
    'cookie_pcc': '701%7C%7Cwww.baidu.com%7C%7C%7C%7Chttps%3A//www.baidu.com/baidu.php/url%3D000000j0xnZgmfstWRzh33VF3cb2EGbljjTm2XORGNVr31dviatIZaLCQZE5tpdPv5THV9_BxhYTSOaWHMrb3jxZP0neoNi04rTdcQ_JttKLkch1fB0z8zImc9OUD9ztvjHr3LC6apNE3cF5h6YwYjAGBkEw0s9PxV_11kcPLpaeyNbbbqeDrGfGTjZQp6ScjLr_onGAVrxoiXvbFS4YnzJELiu2.DR_NR2Ar5Od663rj6tovgdFwKL9JuBBHwmEukmc3tSrZFubzImggFmEukmc3tSrZFubzITTnPHnRipQ7IXeGRojPak8_vUPB60.U1Yk0ZDq_Phl1tL30ZKGm1Ys0Zfq_Phl1tL30A-V5HczPfKM5yq-TZns0ZNG5yF9pywd0ZKGujYkPsKWpyfqn1Rz0AdY5HDsnHIxnH0zndtknjD4g1csPH7xnH0YP7t1PW0k0AVG5H00TMfqPHmY0AFG5HDdr7tznjwxPH010AdW5HD4nWDLPj0vPWFxnH0zndtknjD4g1csPH7xnH0zg100TgKGujYs0Z7Wpyfqn0KzuLw9u1Ys0A7B5HKxn0K-ThTqn0KsTjY4rH6LnWnYnHT0UMus5H08nj0snj0snj00Ugws5H00uAwETjYs0ZFJ5H00uANv5gKW0AuY5H00TA6qn0KET1Ys0AFL5HDs0A4Y5H00TLCq0A71gv-bm1dsTzdMXh93XfKGuAnqiD4K0ZKCIZbq0Zw9ThI-IjYvndtsg1Ddn0KYIgnqnHTzrHbdPWT3n1n3nHb3rHmYPHc0ThNkIjYkPWR1rH63nWnYP1D10ZPGujd-nWRvPHnznj0snjDYPvcL0AP1UHY4fWKafHmdwjP7rRcznbcz0A7W5HD0TA3qn0KkUgfqn0KkUgnqn0KlIjYs0AdWgvuzUvYqn7tsg1Kxn7tknjfvg100uA78IyF-gLK_my4GuZnqn7tsg1Kxn7tznW6Yn1Dkg100TA7Ygvu_myTqn0Kbmv-b5Hm0ugwGujYvP0K9TLKWm1Ys0ZNspy4Wm1Ys0Z7VuWYs0AuWIgfqn0KGTvP_5H00mywhUA7M5HD0UAuW5H00uAPWujYLwWFKPbRLP10Ln1RLfWuKrDczwWnzfWfsPDD4fH9DfW01P1DvPjF70Zwzmyw-5HTLnjnsnfKBuA-b5RDdrHmdP1KawW-DnHb1PRPKwbcdfWwaPDcdf1IKnH7D0AqW5HD0mMfqn0KEmgwL5H00ULfqn0KETMKY5H0WnanWnansc10Wna3snj0snj0Wnansc10WQinsQW0snj0snankQW0snjDsn0K3TLwd5HbkPjTdPsKkgLmqna31n7tsQW0sg108njKxna3vPNtsQWm3g1D8njKxna3sn7tknW60mMPxTZFEuA-b5H00ThqGuhk9u1Ys0APv5fKGTdqWTADqn0KWTjYs0AN1IjYs0APzm1Y1nWD4P0%26us%3Dnewvui%26xst%3DTjY4rH6LnWnYnHTKm1YLwWFKPbRLP10Ln1RLfWuKrDczwWnzfWfsPDD4fH9DfW01P1DvPjF70ycqfHR4PWRLnDFArRfkrHndfY7AfWNaPDcYfWNjPYDknRfKT1YkPWnsrHnkPjf4P1fLnWbLnWTzPdtznWNxn07L5Uju8_OPS07k5Uju8_OPS07d5HbkPjTdPs7Y5HDvPHn4rj6zn1RKUgDqn0cs0BYKmv6quhPxTAnKUZRqn07WUWdBmy-bIfDkPjcLPjRsn16s%26word%3D%26ck%3D3185.2.25.385.151.641.168.334%26shh%3Dwww.baidu.com%26wd%3D%26bc%3D110101',
    'lastLoginDate': 'Fri%20Jun%2017%202022%2015%3A31%3A41%20GMT+0800%20%28%u4E2D%u56FD%u6807%u51C6%u65F6%u95F4%29',
    'accessID': '20220617153144628172',
    'AuthCookie': '4BFFD62B611D896E1BE7F480CCCB001B1BD68628BCF5403139E56FCCC72E6390D959A524156735E2904AF051C2A81FF4D7A6E2425F8EA8583550DF3BFADA8DEAB8663DEBE3E7CEC96BFB0F813A653583',
    'AuthMsgCookie': 'DF8460C627701442D456F6DEC24E885B226FEB41345DB74869EE97E21DE619A502436CD1A716D2090DC7DF0EFBB45751A40365EC5A074F215FD92462159F9EDAF2A7BF61CC190B72160C9577DD9FC8C3',
    'GCUserID': '307535896',
    'OnceLoginWEB': '307535896',
    'LoginEmail': '15565222558%40mobile.baihe.com',
    'userID': '307535896',
    'spmUserID': '307535896',
    'AuthTokenCookie': 'bh.1655451112570_1800.2E664AC5D26098AD7D0726E860794FD423B2D9AA.bhkOo8o.6',
    'orderSource': '10130301',
    'tempID': '2221682829',
    'accessToken': 'BH1655451113251381243',
    'Hm_lvt_5caa30e0c191a1c525d4a6487bf45a9d': '1653465735,1655451114',
    'hasphoto': '1',
    'noticeEvent_307535896': '17',
    'AuthCheckStatusCookie': 'CF1435EE11930031DF4F400BD2B5F82014D1D3015978705726A127B203C4931405E9D878DCC812E7',
    'tgw_l7_route': '0dd999c63b312678b82b8668ba91d54d',
    '_fmdata': 'Ewvc1t%2BSwfMTVNcjWwP%2B0uotvg7udIoQjotCEf9E17Cze%2FAmFlYoO9ck5kXksZIV4NnFW887fy1Cir5%2FSpViSsST%2B7H1NdEsFNtfsQGa62M%3D',
    'Hm_lpvt_5caa30e0c191a1c525d4a6487bf45a9d': '1655451753',
}
headers = {
    'Connection': 'keep-alive',
    'Pragma': 'no-cache',
    'Cache-Control': 'no-cache',
    'Accept': 'text/javascript, application/javascript, application/ecmascript, application/x-ecmascript, */*; q=0.01',
    'X-Requested-With': 'XMLHttpRequest',
    'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_2) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36',
    'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8',
    'Origin': 'https://search.baihe.com',
    'Sec-Fetch-Site': 'same-origin',
    'Sec-Fetch-Mode': 'cors',
    'Referer': 'https://search.baihe.com/',
    'Accept-Language': 'zh-CN,zh;q=0.9',
}

data = {
    'minAge': '19',
    'maxAge': '27',
    'minHeight': '155',
    'maxHeight': '170',
    'education': '1-7',
    'loveType': '',
    'marriage': '',
    'income': '1-6',
    'city': '8611',
    'nationality': '',
    'occupation': '',
    'children': '',
    'bloodType': '',
    'constellation': '',
    'religion': '',
    'online': '',
    'isPayUser': '',
    'isCreditedByAuth': '',
    'hasPhoto': '1',
    'housing': '',
    'car': '',
    'homeDistrict': '',
    'page': '1',
    'sorterField': '1',
}

response = requests.post('https://search.baihe.com/Search/getUserID?&jsonCallBack=jQuery18309875005900753058_1655451752969', cookies=cookies, headers=headers, data=data)

print(response.text)

image.png

第二步:解析数据,把有价值的内容进行提取

import json

data = response.text.lstrip('jQuery18309875005900753058_1655451752969(').rstrip(');')

data=json.loads(data)

data = data['data']
print(data)

经过处理,我们已经把单独的id进行了提取,接下来就可以进行拼接,请求详情页中的数据了。
image.png

image.png

image.png

第三步:持久化保存数据

这里我选择了使用pandas进行存储。

from lxml import etree
import pandas as pd


# 存储数据
name=[]
age=[]
hg=[]
x_l=[]
city=[]
h_p=[]
content=[]


for item_id in data:
    # 拼接 url
    url = 'https://profile1.baihe.com/?oppID='+item_id
    # print(url)

    response_2 = requests.get(url,headers=headers, cookies=cookies).text

    html=etree.HTML(response_2)
    # 姓名
    name.append(html.xpath('//div[@class="name"]/span[2]/text()')[0])
    # 年龄
    age.append(html.xpath('//div[@class="inter"]/p/text()')[0])
    # 身高
    hg.append(html.xpath('//div[@class="inter"]/p/text()')[1])
    # 学历
    x_l.append(html.xpath('//div[@class="inter"]/p/text()')[2])
    # 所在城市
    city.append(html.xpath('//div[@class="inter"]/p/text()')[3])
    # 是否婚配
    h_p.append(html.xpath('//div[@class="inter"]/p/text()')[4])
    # 自我介绍
    content.append(html.xpath('//div[@class="intr"]/text()')[0])
    print(name,age,hg,x_l,city,h_p,content)

df = pd.DataFrame()
df['网名']=name
df['年龄']=age
df['身高']=hg
df['学历']=x_l
df['所在城市']=city
df['是否婚配']=h_p
df['自我介绍']=content

df.to_excel('百合网Demo.xls',encoding='utf-8',index=False) 

image.png

结果展示

image.png

在这个浮躁的时代;竟然还有人能坚持篇篇原创;

如果本文对你学习有所帮助-可以点赞👍+ 关注!将持续更新更多新的文章。

支持原创。感谢!

相关文章
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
3天前
|
数据采集 JSON Java
Java爬虫获取微店快递费用item_fee API接口数据实现
本文介绍如何使用Java开发爬虫程序,通过微店API接口获取商品快递费用(item_fee)数据。主要内容包括:微店API接口的使用方法、Java爬虫技术背景、需求分析和技术选型。具体实现步骤为:发送HTTP请求获取数据、解析JSON格式的响应并提取快递费用信息,最后将结果存储到本地文件中。文中还提供了完整的代码示例,并提醒开发者注意授权令牌、接口频率限制及数据合法性等问题。
|
1天前
|
数据采集 存储 数据挖掘
深入剖析 Python 爬虫:淘宝商品详情数据抓取
深入剖析 Python 爬虫:淘宝商品详情数据抓取
|
4天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
8天前
|
数据采集 前端开发 API
SurfGen爬虫:解析HTML与提取关键数据
SurfGen爬虫:解析HTML与提取关键数据
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
30天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
1月前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
89 3
|
2月前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率

热门文章

最新文章

推荐镜像

更多