Frogger(Floyd算法)

简介: Frogger(Floyd算法)

题目:

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists’ sunscreen, he wants to avoid swimming and instead reach her by jumping.

Unfortunately Fiona’s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps.

To execute a given sequence of jumps, a frog’s jump range obviously must be at least as long as the longest jump occuring in the sequence.

The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy’s stone, Fiona’s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy’s and Fiona’s stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy’s stone, stone #2 is Fiona’s stone, the other n-2 stones are unoccupied. There’s a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying “Scenario #x” and a line saying “Frog Distance = y” where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4

3
17 4
19 4
18 5

0

Sample Output

Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

解题思路:

题上说从青蛙A不能直接到青蛙B,只能从其他的点去跳跃过去,如果A从其他点到B的每次距离都比A到B跳跃距离小的话,就输出其他点中的最大的边,否则直接输出A到B的距离,这个距离就是样例给的点的坐标,根据坐标利用两点之间的距离公式。

程序代码:

#include<stdio.h>
#include<math.h>
int sum;
int juli(int a,int b,int c,int d)
{
  return sum=(c-a)*(c-a)+(d-b)*(d-b);
}
int main()
{
  int n,cas=1;
  int e[500][500],dis[500],i,j,m,t1,t2,min,a,x[500],y[500],k;
  int inf=99999999;
  while(scanf("%d",&n),n!=0)
  {
    for(i=1;i<=n;i++)
      for(j=1;j<=n;j++)
        if(i==j)  e[i][j]=0;
        else   e[i][j]=inf;
    for(i=1;i<=n;i++)
      scanf("%d %d",&x[i],&y[i]);
    for(i=1;i<n;i++)
      for(j=i+1;j<=n;j++)
        e[i][j]=e[j][i]=juli(x[i],y[i],x[j],y[j]);
    for(k=1;k<=n;k++)
      for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        {
          if(e[i][k]>e[k][j])
            a=e[i][k];
          else
            a=e[k][j];
          if(e[i][j]>a)
            e[i][j]=a;
        } 
    printf("Scenario #%d\n",cas++);
    printf("Frog Distance = %.3lf\n",sqrt(e[1][2]));
    printf("\n");
    
  }
  return 0;
}
 


相关文章
|
6月前
|
算法
最短路之Floyd算法
最短路之Floyd算法
75 1
|
6月前
|
算法
class065 A星、Floyd、Bellman-Ford与SPFA【算法】
class065 A星、Floyd、Bellman-Ford与SPFA【算法】
46 0
|
6月前
|
算法
Floyd 最短路径【学习算法】
Floyd 最短路径【学习算法】
73 0
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
算法
Floyd算法
Floyd算法
45 1
|
1月前
|
存储 算法 C++
弗洛伊德(Floyd)算法(C/C++)
弗洛伊德(Floyd)算法(C/C++)
|
3月前
|
算法 Java 测试技术
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
这篇文章介绍了基于动态规划法的三种算法:解决背包问题的递归和自底向上实现、Warshall算法和Floyd算法,并提供了它们的伪代码、Java源代码实现以及时间效率分析。
算法设计(动态规划实验报告) 基于动态规划的背包问题、Warshall算法和Floyd算法
|
5月前
|
存储 算法 C语言
数据结构学习记录——图-最短路径问题(无权图单源最短路径算法、有权图单源最短路径算法、多源最短路径算法、Dijkstra(迪杰斯特拉)算法、Floyd算法)
数据结构学习记录——图-最短路径问题(无权图单源最短路径算法、有权图单源最短路径算法、多源最短路径算法、Dijkstra(迪杰斯特拉)算法、Floyd算法)
87 1
|
11月前
|
算法
floyd算法
floyd算法
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。