PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化

简介: PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化

全文下载链接:http://tecdat.cn/?p=29480

作者:Xingsheng Yang


1 利用 python 获取链家网公开的租房数据;

2 对租房信息进行分析,主要对房租相关特征进行分析,并搭建模型用于预测房租。


任务/目标


利用上海链家网站租房的公开信息,着重对月租进行数据分析和挖掘。


上海租赁数据


此数据来自 Lianjia.com.csv文件包含名称,租赁类型,床位数量,价格,经度,纬度,阳台,押金,公寓,描述,旅游,交通,独立浴室,家具,新房源,大小,方向,堤坝,电梯,停车场和便利设施信息。

属性:

名称:列表名称

类型:转租或全部租赁(全部)

床:卧室号码

价格

经度/纬度:坐标

阳台,押金(是否有押金政策),公寓,描述,旅游可用性,靠近交通,独立浴室,家具

新房源:NO-0,YES-1

面积:平方米

朝向:朝向窗户,南1,东南2,东-3,北4,西南-5,西-6,西北-7,东北8,未知-0

级别:房源层级, 地下室-0, 低层(1-15)-1, 中层(15-25)-2, 高层(>25)-3

停车场:无停车场-0,额外收费-1,免费停车-2

设施:设施数量

import pandas as pd
import numpy as np
import geopandas 
df = pd.read\_csv('lighai.csv', sep =',', encoding='utf\_8\_sig', header=None)
df.head()

数据预处理


ETL处理,清理数据帧。

df_clean.head()

探索性分析 - 数据可视化


plt.figure(figsize=(8, 6))
sns.distplot(df_clean.price, bins=500, kde=True)
plt.xscale('log') # Log transform the price

读取地理数据


plt.figure(figsize=(12, 12))
sns.heatmap(df_clean.corr(), square=True, annot=True, fmt = '.2f', cmap = 'vla


点击标题查阅往期内容


线性回归和时间序列分析北京房价影响因素可视化案例


01

02

03

04



模型构建


尝试根据特征预测价格。

y = df\_clean.log\_price
X = df\_clean.iloc\[:, 1:\].drop(\['price', 'log\_price'\], axis=1)

岭回归模型


ridge = Ridge()
alphas = \[0.0001, 0.001, 0.001, 0.01, 0.1, 0.5, 1, 2, 3, 5, 10\]

Lasso回归

coef.sort_values(ascending=False).plot(kind = 'barh')

Random forest随机森林

rf\_cv.fit(X\_train, y_train)

XGBoost

xgb_model.loc\[30:,\['test-rmse-mean', 'train-rmse-mean'\]\].plot();

xgb\_cv.fit(X\_train, y_train)

Keras神经网络


model.add(Dense(1, kernel_initializer='normal'))
# Compile model
model.compile(loss='mean\_squared\_error', optimizer='Adam')
model.summary()

kmeans聚类数据


kmeanModel = KMeans(n_clusters=k).fit(X) 
    kmeanModel.fit(X)     
    inertias.append(kmeanModel.inertia_) 
plt.plot(K, inertias, 'bx-')

gpd.plot(figsize=(12,10), alpha=0.3)
scatter\_map = plt.scatter(data=df\_clean, x='lon', y='lat', c='label', alpha=0.3, cmap='tab10', s=2)

相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
52 2
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
128 4
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
【优秀python web系统毕设】基于python的全国招聘数据分析可视化系统,包括随机森林算法
本文介绍了一个基于Python的全国招聘数据分析可视化系统,该系统利用数据挖掘技术、随机森林算法和数据可视化技术,从招聘网站抓取数据,进行处理、分析和预测,帮助用户洞察招聘市场,为求职者和企业提供决策支持。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
63 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
7天前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
13 2
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
39 10
|
1月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
52 5
|
2月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
100 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
33 0
|
2月前
|
机器学习/深度学习 数据采集 算法
【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】
【python】python基于微博互动数据的用户类型预测(随机森林与支持向量机的比较分析)(源码+数据集+课程论文)【独一无二】