python Kmeans算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

一. 概述

首先需要先介绍一下无监督学习,所谓无监督学习,就是训练样本中的标记信息是位置的,目标是通过对无标记训练样本的学习来揭示数据的内在性质以及规律。通俗得说,就是根据数据的一些内在性质,找出其内在的规律。而这一类算法,应用最为广泛的就是“聚类”。

聚类算法可以对数据进行数据归约,即在尽可能保证数据完整的前提下,减少数据的量级,以便后续处理。也可以对聚类数据结果直接应用或分析。

而Kmeans 算法可以说是聚类算法里面较为基础的一种算法。

二. 从样例开始

我们现在在二维平面上有这样一些点

      x                  y
1.658985        4.285136
-3.453687        3.424321
4.838138        -1.151539
-5.379713        -3.362104
0.972564        2.924086
-3.567919        1.531611
0.450614        -3.302219
-3.487105        -1.724432
2.668759        1.594842
-3.156485        3.191137
3.165506        -3.999838
-2.786837        -3.099354
4.208187        2.984927
-2.123337        2.943366
0.704199        -0.479481
-0.392370        -3.963704
2.831667        1.574018
-0.790153        3.343144
2.943496        -3.357075
...

它在二维平面上的分布大概是这样的:

好,这些点看起来隐约分成4个“簇”,那么我们可以假定它就是要分成4个“簇”。(虽然我们可以“看”出来是要分成4个“簇”,但实际上也可以分成其他个,比如说5个。)这里分成“4个簇“是我们看出来的。而在实际应用中其实应该由机器算得,下面也会有介绍的。

找出4个”簇”之后,就要找出每个“簇”的中心了,我们可以“看出”大概的中心点,但机器不知道啊。那么机器是如何知道的呢?答案是通过向量距离,也叫向量相似性。这个相似性计算有多种方法,比如欧式距离,曼哈顿距离,切比雪夫距离等等。

我们这里使用的是欧式距离,欧式距离其实就是反应空间中两点的直线距离。

知道这些后,我们就可以开始让机器计算出4个“簇”了。

主要做法是这样,先随机生成4个点,假设这4个点就是4个“簇”的中心。计算平面中每个点到4个中心点的距离,平面中每个点选取距离最近的那个中心作为自己的中心。

此时我们就完成第一步,将平面中所有点分成4个”簇“。但是刚刚那几个中心都是随机的,这样分成的4个簇明显不是我们想要的结果。怎么办呢?做法如下:

现在有4个簇,根据每个簇中所有点计算出每个簇的新中心点。这个新中心点就会比上一个旧的中心点更优,因为它更加中心。然后使用新中心点重复第一步的步骤。即再对平面中所有点算距离,然后分发到4个新簇中。不断迭代,直到误差较小。

这就是 Kmeans 算法的过程了。

三. 知识点浅析

3.1 确定“簇”的个数

上面所说的分成 4 个簇,这个 4 其实就是 Kmeans 中的K。要使用 Kmeans 首先就是要选取一个 K 作为聚类个数。而上面的例子其实是我们主观”看“出来的,但多数情况下我们是无法直观”看“出分多少个 K 比较好。那怎么办呢?

我们可以从较低的 K 值开始。使用较简单的 Kmeans 算法的结果(即较少的迭代次数,不求最佳结果,但求最快)。计算每个点到其归属的“簇”的中心点的距离,然后求和,求和结果就是误差值。
然后再增加 K 值,再计算误差值。比如上面的例子,我们可以从 K=2 开始,计算 K 值从 2 到 7 的 Kmeans 算法的误差值。
这样会得到类似这样一张图:


里面的 Error 可以理解未 Kmeans 的误差,而当分成越多“簇”的适合,误差肯定是越来越小。

但是不是“簇”越多越好呢?答案是否定的,有时候“簇”过多的话是不利于我们得到想要的结果或是做下一步操作的。

所以我们通常会选择误差减小速度比较平缓的那个临界点,比如上图中的 4

可以发现,在分成 4 个簇之后,再增加簇的数量,误差也不会有很大的减少。而取 4 个簇也和我们所看到的相符。

3.2 欧式距离

3.2 欧式距离

欧氏距离是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,计算公式如下:

而本例种的是在二维空间种,故而本例的计算公式如下:

四. 代码和结果

加载数据的代码,使用了 numpy ,先是将代码加载成 matrix 类型。

import numpy as np

def loadDataSet(fileName):
    '''
    加载数据集
    :param fileName:
    :return:
    '''
    # 初始化一个空列表
    dataSet = []
    # 读取文件
    fr = open(fileName)
    # 循环遍历文件所有行
    for line in fr.readlines():
        # 切割每一行的数据
        curLine = line.strip().split('\t')
        # 将数据转换为浮点类型,便于后面的计算
        # fltLine = [float(x) for x in curLine]
        # 将数据追加到dataMat
        fltLine = list(map(float,curLine))    # 映射所有的元素为 float(浮点数)类型
        dataSet.append(fltLine)
    # 返回dataMat
    return np.matrix(dataSet)

接下来需要生成 K 个初始的质点,即中心点。这里采用随机生成的方法生成 k 个“簇”。


def randCent(dataMat, k):
    '''
    为给定数据集构建一个包含K个随机质心的集合,
    随机质心必须要在整个数据集的边界之内,这可以通过找到数据集每一维的最小和最大值来完成
    然后生成0到1.0之间的随机数并通过取值范围和最小值,以便确保随机点在数据的边界之内
    :param dataMat:
    :param k:
    :return:
    '''
    # 获取样本数与特征值
    m, n = np.shape(dataMat)
    # 初始化质心,创建(k,n)个以零填充的矩阵
    centroids = np.mat(np.zeros((k, n)))
    # 循环遍历特征值
    for j in range(n):
        # 计算每一列的最小值
        minJ = min(dataMat[:, j])
        # 计算每一列的范围值
        rangeJ = float(max(dataMat[:, j]) - minJ)
        # 计算每一列的质心,并将值赋给centroids
        centroids[:, j] = np.mat(minJ + rangeJ * np.random.rand(k, 1))
    # 返回质心
    return centroids

欧式距离计算

def distEclud(vecA, vecB):
    '''
    欧氏距离计算函数
    :param vecA:
    :param vecB:
    :return:
    '''
    return np.sqrt(sum(np.power(vecA - vecB, 2)))

cost 方法将执行一个简化的 kMeans ,即较少次数的迭代,计算出其中的误差(即当前点到簇质心的距离,后面会使用该误差来评价聚类的效果)

def cost(dataMat, k, distMeas=distEclud, createCent=randCent,iterNum=300):
    '''
    计算误差的多少,通过这个方法来确定 k 为多少比较合适,这个其实就是一个简化版的 kMeans
    :param dataMat: 数据集
    :param k: 簇的数目
    :param distMeans: 计算距离
    :param createCent: 创建初始质心
    :param iterNum:默认迭代次数
    :return:
    '''
    # 获取样本数和特征数
    m, n = np.shape(dataMat)
    # 初始化一个矩阵来存储每个点的簇分配结果
    # clusterAssment包含两个列:一列记录簇索引值,第二列存储误差(误差是指当前点到簇质心的距离,后面会使用该误差来评价聚类的效果)
    clusterAssment = np.mat(np.zeros((m, 2)))
    # 创建质心,随机K个质心
    centroids = createCent(dataMat, k)
    clusterChanged = True
    while iterNum > 0:
        clusterChanged = False
        # 遍历所有数据找到距离每个点最近的质心,
        # 可以通过对每个点遍历所有质心并计算点到每个质心的距离来完成
        for i in range(m):
            minDist = np.inf
            minIndex = -1
            for j in range(k):
                # 计算数据点到质心的距离
                # 计算距离是使用distMeas参数给出的距离公式,默认距离函数是distEclud
                distJI = distMeas(centroids[j, :], dataMat[i, :])
                # print(distJI)
                # 如果距离比minDist(最小距离)还小,更新minDist(最小距离)和最小质心的index(索引)
                if distJI < minDist:
                    minDist = distJI
                    minIndex = j
            # 更新簇分配结果为最小质心的index(索引),minDist(最小距离)的平方
            clusterAssment[i, :] = minIndex, minDist ** 2
            iterNum -= 1;
        # print(centroids)
        # 遍历所有质心并更新它们的取值
        for cent in range(k):
            # 通过数据过滤来获得给定簇的所有点
            ptsInClust = dataMat[np.nonzero(clusterAssment[:, 0].A == cent)[0]]
            # 计算所有点的均值,axis=0表示沿矩阵的列方向进行均值计算
            centroids[cent, :] = np.mean(ptsInClust, axis=0)
    # 返回给定迭代次数后误差的值
    return np.mat(clusterAssment[:,1].sum(0))[0,0]

最后可以调用 Kmeans 算法来进行计算。


def kMeans(dataMat, k, distMeas=distEclud, createCent=randCent):
    '''
    创建K个质心,然后将每个店分配到最近的质心,再重新计算质心。
    这个过程重复数次,直到数据点的簇分配结果不再改变为止
    :param dataMat: 数据集
    :param k: 簇的数目
    :param distMeans: 计算距离
    :param createCent: 创建初始质心
    :return:
    '''
    # 获取样本数和特征数
    m, n = np.shape(dataMat)
    # 初始化一个矩阵来存储每个点的簇分配结果
    # clusterAssment包含两个列:一列记录簇索引值,第二列存储误差(误差是指当前点到簇质心的距离,后面会使用该误差来评价聚类的效果)
    clusterAssment = np.mat(np.zeros((m, 2)))
    # 创建质心,随机K个质心
    centroids = createCent(dataMat, k)
    # 初始化标志变量,用于判断迭代是否继续,如果True,则继续迭代
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        # 遍历所有数据找到距离每个点最近的质心,
        # 可以通过对每个点遍历所有质心并计算点到每个质心的距离来完成
        for i in range(m):
            minDist = np.inf
            minIndex = -1
            for j in range(k):
                # 计算数据点到质心的距离
                # 计算距离是使用distMeas参数给出的距离公式,默认距离函数是distEclud
                distJI = distMeas(centroids[j, :], dataMat[i, :])
                # 如果距离比minDist(最小距离)还小,更新minDist(最小距离)和最小质心的index(索引)
                if distJI < minDist:
                    minDist = distJI
                    minIndex = j
            # 如果任一点的簇分配结果发生改变,则更新clusterChanged标志
            if clusterAssment[i, 0] != minIndex: clusterChanged = True
            # 更新簇分配结果为最小质心的index(索引),minDist(最小距离)的平方
            clusterAssment[i, :] = minIndex, minDist ** 2
        # print(centroids)
        # 遍历所有质心并更新它们的取值
        for cent in range(k):
            # 通过数据过滤来获得给定簇的所有点
            ptsInClust = dataMat[np.nonzero(clusterAssment[:, 0].A == cent)[0]]
            # 计算所有点的均值,axis=0表示沿矩阵的列方向进行均值计算
            centroids[cent, :] = np.mean(ptsInClust, axis=0)
    # 返回所有的类质心与点分配结果
    return centroids, clusterAssment

选取不同的 k 值对结果影响有多大呢?我们来看看就知道了,下面给出的是 k 值为 2 到 6 的效果。
图中红色方块即为“簇”的中心点,每个“簇”所属的点用不同的颜色表示。
K = 2

K = 3

K = 4

K = 5

K = 6

相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
145 55
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
114 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
4天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
43 20
|
20天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
117 30
|
2天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
34 5
|
9天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
7天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
57 5
|
21天前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
2天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
28 0
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
105 80