遗传算法原理详细讲解(算法+Python源码)

简介: 遗传算法原理详细讲解(算法+Python源码)

一、遗传算法

遗传算法的概念最早由约翰·霍兰德(John Holland)在20世纪60年代提出。霍兰德是一位美国的电气工程师和计算机科学家,他对生物学中的自然选择和遗传机制产生了浓厚兴趣,并试图将这些生物学原理应用于解决优化和搜索问题。霍兰德的观点: 约翰·霍兰德在20世纪60年代初期,通过研究自然选择和遗传机制,提出了一种新颖的优化算法的思想。他认为,自然选择的过程中,通过基因的遗传和变异,使得物种逐渐适应环境,并找到更好的生存策略。他意识到这一思想可以应用于解决工程和计算问题。 霍兰德于1975年出版了一本名为《自然和人工系统中的适应性》(Adaptation in Natural and Artificial Systems)的书,其中详细介绍了他的遗传算法理论。这本书被认为是遗传算法的奠基之作。

基本原理: 遗传算法的基本原理是通过模拟自然选择和遗传机制进行优化。个体(解决方案)被编码为基因型,通过遗传操作(交叉和变异)来生成新的个体。适应度函数用于评估个体的优劣,更适应环境的个体有更高的概率被选中进入下一代。

演化过程: 遗传算法的演化过程模拟了生物进化的过程,包括选择、交叉和变异。适应度高的个体更有可能被选中,同时,基因交叉和变异引入了新的基因组合,增加了搜索空间的多样性。

应用: 随着计算机科学和人工智能的发展,遗传算法被应用于解决各种优化问题,如组合优化、函数优化、机器学习等。它在搜索空间庞大、复杂问题中的全局搜索能力使其受到了广泛关注。

二、常见的遗传算法变体

  1. 标准遗传算法(Standard Genetic Algorithm, SGA):
    主要特点是通用,适用于各种优化问题。
  2. 进化策略(Evolutionary Strategies, ES):
    优点: 强调个体的变异,通过适应性进化来探索搜索空间。在高维、大规模问题中表现较好。
  3. 遗传规划算法(Genetic Programming, GP):
    优点: 用于自动发现计算机程序或表达式,适用于符号回归、符号分类等问题。能够发现复杂的解决方案。
  4. 遗传局部搜索算法(Genetic Local Search, GLS):
    优点: 结合了遗传算法和局部搜索的优点,通过遗传算法进行全局搜索,然后通过局部搜索进行精细调整。在解空间的不同区域都能有效搜索。
  5. 多目标遗传算法(Multi-Objective Genetic Algorithm, MOGA):
    优点: 用于处理多目标优化问题,同时优化多个目标函数。通过 Pareto 最优前沿来表示和保留多个解决方案。
  6. 协同演化(Co-Evolution):
  • 优点: 多种群体之间进行协同演化,每个群体演化出一部分解决方案。适用于解决复杂问题,能够处理多个相互影响的子问题。
  1. 遗传局部优化算法(Genetic Local Optimization, GLO):
    优点: 结合了全局搜索和局部优化的特点,利用全局搜索来探索解空间,再通过局部优化进行细致调整。
  2. 差分进化算法(Differential Evolution, DE):
    优点: 强调差分操作,通过对个体之间的差异进行搜索。在全局优化问题中表现良好,对参数敏感性较小。
  3. 自适应遗传算法(Adaptive Genetic Algorithm):
    优点: 能够动态调整算法参数,适应问题的特性。在问题变化较大或参数选择困难时具有较好的适应性。
  4. 混合遗传算法(Hybrid Genetic Algorithm):
    优点: 结合遗传算法与其他优化方法,如局部搜索、模拟退火等。在不同问题场景中综合利用不同算法的优势。

三、遗传算法操作步骤

1. 开始

2. 初始化种群

3. 评估种群中每个个体的适应度

4. 是否满足停止条件?

  - 是:结束,输出最优解

  - 否:

     5. 选择操作:根据适应度选择父代个体

     6. 交叉操作:对选定的父代进行基因交叉,生成新个体

     7. 变异操作:对新生成的个体进行基因变异

     8. 评估新生成的个体的适应度

     9. 替换操作:将新生成的个体替换掉原种群中适应度较差的个体

     10. 回到步骤4

11. 结束

1. 基因编码(Representation):

  • 个体表示: 解决方案被编码成一个个体,通常称为染色体。染色体由基因组成,而基因则是问题的解决方案的一部分。
  • 编码方式: 基因可以用二进制、实数、整数等方式进行编码,具体取决于问题的性质。

2. 初始化种群(Initialization):

  • 种群生成: 随机生成初始的个体群体,即种群。每个个体代表问题的一个可能解。

3. 适应度评估(Evaluation):

  • 适应度函数: 为每个个体计算适应度值,该值表示个体解决问题的优劣程度。适应度函数是根据问题的特性而定义的。

4. 选择(Selection):

  • 轮盘赌选择: 个体被选择的概率与其适应度成正比。适应度较高的个体更有可能被选中,以模拟自然选择的过程。

5. 交叉(Crossover):

  • 基因交叉: 选定一对父代个体,通过某种方式将它们的基因组合生成新的个体。常见的交叉方式包括单点交叉、多点交叉、均匀交叉等。

6. 变异(Mutation):

  • 基因变异: 对个体的某些基因进行随机变动。变异操作引入了新的基因信息,有助于保持种群的多样性。

7. 替换(Replacement):

  • 新一代形成: 通过选择、交叉和变异生成的新个体替代原来种群中的一部分个体。替换操作保持种群规模不变。

8. 重复迭代(Iteration):

  • 演化过程: 通过反复进行选择、交叉、变异和替代,逐渐进化种群。迭代次数可以根据问题的复杂性和算法性能进行调整。

9. 收敛检测:

  • 停止条件: 当达到预定的停止条件(如迭代次数达到设定值或找到满意的解)时,遗传算法终止。

10. 最优解提取:

  • 解的提取: 在遗传算法运行结束后,从最终的种群中提取具有最佳适应度的个体,即优秀的解决方案。

其核心思想就是通过模拟自然选择、遗传机制,遗传算法能够在搜索空间中自适应地寻找问题的优秀解。主要是通过交叉和变异引入新的组合解。

四、算法演示(Python)

  1. 问题描述: 该问题涉及通过遗传算法优化四个参数(p1、p2、q1、q2),使得目标函数的值最小化。目标函数用于拟合一些实际数据,其中包括肝、肺、胃内的浓度数据。
  2. 编码和解码:
  • 编码: 每个个体(种群中的一个成员)通过二进制编码表示四个参数。
  • 解码: 通过解码操作将二进制编码转换为实际参数值。
  1. 目标函数设计:
  • 提供了两种不同的目标函数(F和F2)供选择。
  • 目标函数的计算基于实际数据和模型预测值之间的误差。
  1. 适应度函数:
  • 适应度函数根据目标函数的值计算个体的适应度。适应度越高,个体越有可能被选择为父代。
  1. 遗传算法操作:
  • 选择: 根据适应度选择个体,采用轮盘赌选择。
  • 交叉和变异: 采用单点交叉操作,以一定的概率发生交叉,并对基因进行变异。
  • 替换: 将新生成的个体替换掉原种群中适应度较差的个体。
  1. 迭代: 通过多次迭代,不断演化种群,寻找最优解。
  2. 结果输出: 打印最终种群中适应度最好的个体及其对应的参数值。
import numpy as np
import warnings
 
warnings.filterwarnings('ignore')
 
DNA_SIZE = 20  # DNA长度(二进制编码长度)
POP_SIZE = 150  # 初始种群数量
CROSSOVER_RATE = 0.95  # 交叉率
MUTATION_RATE = 0.005  # 变异率 将0.005改为0.01
N_GENERATIONS = 1000  # 进化代数 进化代数在 800—1200 之间比较适合,本文选取进化1000代
p1_BOUND = [0, 1]  # 确定参数的范围
p2_BOUND = [0, 1]
q1_BOUND = [0, 1]
q2_BOUND = [0, 1]
 
dic_liver = {0.167: 0.681, 0.5: 0.436, 1: 0.709, 2: 0.263, 6: 0.12}  # 键表示时间(h),值表示肝内的浓度
dic_lung = {0.167: 1.069, 0.5: 0.689, 1: 0.666, 2: 0.342, 6: 0.162}  # 表示肺内的浓度
dic_stomach = {0.167: 4.827, 0.5: 3.866, 1: 1.67, 2: 1.638, 6: 0.798}  # 表示胃内的浓度的
 
 
def F(p1, p2, q1, q2):  # 设计目标函数 法一
    fun = 0
    for key, value in dic_liver.items():
        fun = ((p1 * np.exp(-q1 * key) + p2 * np.exp(-q2 * key)) - value) ** 2 + fun
    return fun
 
 
def F2(p1, p2, q1, q2):  # 设计目标函数 法二
    l1 = list(dic_liver.keys())
    l2 = list(dic_liver.values())
    result = [((p1 * np.exp(-q1 * i) + p2 * np.exp(-q2 * i)) - j) ** 2 for i, j in zip(l1, l2)]
    # result = sum(result)
    total = 0
    for i in range(len(result)):
        total = total + result[i]
    return total
 
# 求最小值对应的适应度函数
def get_fitness(pop):
    p1, p2, q1, q2 = translateDNA(pop)
    pred = F(p1, p2, q1, q2)
    return -(pred - np.max(pred)) + 1e-3  # 要加上一个很小的正数
 
def translateDNA(pop):  # 解码 pop表示种群矩阵,一行表示一个二进制编码表示的DNA,矩阵的行数为种群数目 即行数为150行,列数为每个DNA长度*DNA个数,即20*4=80列(150*80)
    p1_pop = pop[:, :20]
    p2_pop = pop[:, 20:40]
    q1_pop = pop[:, 40:60]
    q2_pop = pop[:, 60:]
 
    p1 = p1_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (p1_BOUND[1] - p1_BOUND[0]) + p1_BOUND[
        0]
    p2 = p2_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (p2_BOUND[1] - p2_BOUND[0]) + p2_BOUND[
        0]
    q1 = q1_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (q1_BOUND[1] - q1_BOUND[0]) + q1_BOUND[
        0]
    q2 = q2_pop.dot(2 ** np.arange(DNA_SIZE)[::-1]) / float(2 ** DNA_SIZE - 1) * (q2_BOUND[1] - q2_BOUND[0]) + q2_BOUND[
        0]
    return p1, p2, q1, q2
 
# 以下函数包含两个功能,交叉和变异
def crossover_and_mutation(pop, CROSSOVER_RATE=0.95):  # 单点交叉
    new_pop = []
    for father in pop:  # 遍历种群中的每一个个体,将该个体作为父亲
        child = father  # 孩子先得到父亲的全部基因(这里我把一串二进制串的那些0,1称为基因)
        if np.random.rand() < CROSSOVER_RATE:  # 产生子代时不是必然发生交叉,而是以一定的概率发生交叉
            mother = pop[np.random.randint(POP_SIZE)]  # 再种群中选择另一个个体,并将该个体作为母亲
            cross_points = np.random.randint(low=0, high=DNA_SIZE * 4)  # 随机产生交叉的点
            child[cross_points:] = mother[cross_points:]  # 孩子得到位于交叉点后的母亲的基因
        mutation(child)  # 每个后代有一定的机率发生变异
        new_pop.append(child)
 
    return new_pop
 
 
# 基本位变异算子
def mutation(child, MUTATION_RATE=0.005):
    if np.random.rand() < MUTATION_RATE:  # 以MUTATION_RATE的概率进行变异
        mutate_point = np.random.randint(0, DNA_SIZE * 4)  # 随机产生一个实数,代表要变异基因的位置
        child[mutate_point] = child[mutate_point] ^ 1  # 将变异点的二进制为反转(异或运算符 1与1为0、1与0为1、0与0为0)
 
 
def select(pop, fitness):  # 描述了从np.arange(POP_SIZE)里选择每一个元素的概率,概率越高约有可能被选中,最后返回被选中的个体即可
    idx = np.random.choice(np.arange(POP_SIZE), size=POP_SIZE, replace=True,
                           p=(fitness) / (fitness.sum()))
    return pop[idx]
 
# # np.random.choice()函数的用法
# arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
# np.random.choice(aa_milne_arr, size=11, p=[0.5, 0.1, 0.1, 0.3])
 
 
def print_info(pop):
    fitness = get_fitness(pop)
    min_fitness_index = np.argmin(fitness)  # 表示为array的最大值/最小值对应的索引
    print("min_fitness:", fitness[min_fitness_index])
    p1, p2, q1, q2 = translateDNA(pop)
    print("最优的基因型:", pop[min_fitness_index])
    print("(p1, p2, q1, q2):",
          (p1[min_fitness_index], p2[min_fitness_index], q1[min_fitness_index], q2[min_fitness_index]))
 
if __name__ == "__main__":
 
    pop = np.random.randint(2, size=(POP_SIZE, DNA_SIZE * 4))  # matrix (POP_SIZE, DNA_SIZE) POP_SIZE为150,DNA_SIZE为20
    for _ in range(N_GENERATIONS):  # 迭代N代
        pop = np.array(crossover_and_mutation(pop, CROSSOVER_RATE))  # 进行交叉和变异
        fitness = get_fitness(pop)
        pop = select(pop, fitness)
 
    print_info(pop)

五、总结

遗传算法通过模拟自然选择和遗传机制,能够在搜索空间中找到较好的解决方案,尤其在复杂问题和大规模搜索空间中表现出色。但是存在最大缺点是需要巨大计算资源,对于及时响应存在不足问题。目前对于遗传算法还有待深入研究,尤其是对于不同实际问题需求,数据特点等,通过引入随机操作等降低算法时间和空间复杂度是一项值得深入的研究方向。

大家点赞、收藏、关注、评论啦 !

谢谢哦!如果不懂,欢迎大家下方讨论学习哦。


相关文章
|
11天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
103 66
|
1天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
14 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
4天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
26 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
10天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
57 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
12天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
8天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
13天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
49 0
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。