[数据结构]——算法的时间复杂度和空间复杂度

简介: [数据结构]——算法的时间复杂度和空间复杂度

🐰1.算法效率


🙈1.算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。



🐰2.时间复杂度


🙈1.时间复杂度的概念


时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。


找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。


// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

Func1 执行的基本操作次数 :

N = 10                   F(N) = 130

N = 100                 F(N) = 10210                          F(N)=N^2+2*N+10

N = 1000               F(N) = 1002010


实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。


🙈2.大O的渐进表示法

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项(决定性的那项)。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:


N = 10 F(N) = 100

N = 100 F(N) = 10000

N = 1000 F(N) = 1000000


通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。另外有些算法的时间复杂度存在最好、平均和最坏情况:


最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)


例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


🙈3.常见时间复杂度计算举例


🐣实例1

// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

F(N)=2*N+10

所以时间复杂度为O(N);

🐣实例2

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}

不确定M和N的关系

O(M+N)       错误


O(max(M,N)

N远大于M

O(N)

M远大于N

O(M)

N和M差不多大

O(N)or O(M)


🐣实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}

不难发现,函数Func4的时间复杂度与N无关,为常数次—100


所以时间复杂度为O(1);


🐣实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character )
{
while(*str)
{
if(*str == character)
return str;
++str;
}

时间复杂度最好 最坏 平均  时间复杂度取最坏 O(N)


🐣实例5:

计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}


时间复杂度不能数代码循环次数,要根据思想灵活计算.


n-1  n-2 n-3 n-4 n-5......5 4 3 2 1  n*(n-1)/2


所以该函数的时间复杂度为O(N^2)


🐣实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
// [begin, end]:begin和end是左闭右闭区间,因此有=号
while (begin <= end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid-1;
else
return mid;
}
return -1;
}

二分法查找      N/2/2....../2=1

最坏情况:找了多少次,除了多少个2

假设找x次

N=2^x  —>x是以2为底的对数——>简写为logN


所以该函数的时间复杂度为O(logN).


🐣实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}
 Fac(N)—>Fac(N-1)—>Fac(N-2)—>Fac(N—3).......Fac(2)—>Fac(1)—>Fac(0)


递归调用是多次调用累加;所以该函数的时间复杂度为O(N).


🐣实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}

image.png

image.png


二叉树类型,基本操作递归了2^N次,时间复杂度为O(2^N)。

🐰3.空间复杂度


🙈1.概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时的额外占用存储空间大小的量度 。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。

空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。


🙈2.常见空间复杂度计算举例

🐣实例1:

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

算法在运行过程中临时的额外占用存储空间大小 ,在该函数中,额外开辟的空间只有 end,i,exchange都是常数个,冒泡排序中数组的数据不算,并不是算法逻辑的需求额外开辟的空间,而是本身就提供的.


使用了常数个额外空间,所以空间复杂度为 O(1)


🐣实例2:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
 malloc(n+1)   算法的需要开辟了(n+1)个空间

动态开辟了N个空间,空间复杂度为 O(N)


🐣实例3:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)


🙈3.常见复杂度对比


一般算法常见的复杂度如下:

image.png

image.png

🐰4. 常见复杂度oj练习


🙈1.消失的数字


数组nums包含从0到n的所有整数,但其中缺了一个。请编写代码找出那个缺失的整数。


你有办法在O(n)时间内完成吗?


注意:本题相对书上原题稍作改动


示例 1:


输入:[3,0,1]

输出:2


示例 2:


输入:[9,6,4,2,3,5,7,0,1]

输出:8



🐣思路 1:

1.冒泡排序


2.遍历,如果当前值+1,不等于下一个数字就是下一个数


此时时复杂度为O(N^2)


int missingNumber(int* nums, int numsSize)
{
  int cout=0,temp = 0,i;
  for (i = 0; i < numsSize-1; i++)
  {
    for (int j = 0; j < numsSize -1- i; j++)
    {
      if (nums[j] > nums[j+1])
      {
        temp = nums[j];
        nums[j] = nums[j+1];
        nums[j+1] = temp;
        cout = 1;
        }
    }
    if (cout == 0)
      break;
  }
  for (i = 0; i < numsSize-1; i++)
  {
    if ((nums[i] + 1) != nums[i + 1])
    {
      return nums[i] + 1;
    }
  }
}


🐣思路 2:

单身狗 异或思想:res = res ^ x ^ x。对同一个值异或两次,那么结果等于它本身


例如:输入:[9,6,4,2,3,5,7,0,1]

          输出:8


我们重新创建一个数组[0.1.2.3.4.5.6.7.8.9]与所求数组[9,6,4,2,3,5,7,0,1]进行异或,


剩下的数字就是缺失的整数。 F(N)=2N-1;


时间复杂度为O(N).


int missingNumber(int* nums, int numsSize)
{
   int ret=0;
   for(int i=0;i<numsSize;i++)
   {
       ret^=nums[i];
   } 
      for(int i=0;i<=numsSize;i++)    
      {
          ret^=i;
      }
      return ret;

🐣思路 3:

1.0—n 等差数列计算和;


2.依次减掉数据中的值,剩下的就是消失的数字.F(N)=N-1


时间复杂度为O(N).


int missingNumber(int* nums, int numsSize)
{
    int N=numsSize;
    int sum=((0+N)*(N+1))/2;
    for (int i=0;i<numsSize;i++)
{
    sum-=nums[i];
}
    return sum;
}

🙈2.旋转数组

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。


示例 1:


输入: nums = [1,2,3,4,5,6,7], k = 3

输出: [5,6,7,1,2,3,4]

解释:

向右轮转 1 步: [7,1,2,3,4,5,6]

向右轮转 2 步: [6,7,1,2,3,4,5]

向右轮转 3 步: [5,6,7,1,2,3,4]

示例 2:


输入:nums = [-1,-100,3,99], k = 2

输出:[3,99,-1,-100]

解释:

向右轮转 1 步: [99,-1,-100,3]

向右轮转 2 步: [3,99,-1,-100]


提示:


1 <= nums.length <= 105

-231 <= nums[i] <= 231 - 1

0 <= k <= 105


进阶:


尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。

你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?


🐣思路 1:

把所有的元素都遍历一遍,都找到它应该去的位置,用cout变量来记录遍历了多少个元素,起初从nums[0]开始,如果走了一圈之后还有元素没有遍历到的话,那就从nums[1]开始走再走一圈,以此类推,显然我们需要两层循环,当cout==numsSize的时候,就可以结束遍历了。虽然是两重循环,但是时间复杂度是O(N),因为每个元素只被遍历一次。


void swap(int* a, int* b)
{
    int t;
    t = *a;
    *a = *b;
    *b = t;
}
void rotate(int* nums, int numsSize, int k)
{
    int cout = 0;
    int temp, p;
    for (int start = 0; start < numsSize; start++)
    {
        temp = nums[start];
        p = start;
        do
        {
            p = (p + k) % numsSize;
            swap(&temp, &nums[p]);
            cout++;
        } while (p != start);
        if (cnt == numsSize) break;
    }
}

🐣思路 2:三步旋转

例如       输入:nums=[1,2,3,4,5,6,7],k=3

             输出:[5,67,1,2,3,4]

4321567              前n-k个逆置

4321765              后k个逆置

5671234              整体逆置


void reverse(int* nums, int left, int right)
{
while (left < right)
     {
         int temp=nums[left];
         nums[left]=nums[right];
         nums[right]=temp;
        ++left;
         --right;    
     }
    }
   void rotate(int* nums, int numsize, int k)
    {
        k %= numsize;
        reverse(nums, 0, numsize-k - 1);
        reverse(nums, numsize-k ,numsize- 1);
        reverse(nums, 0, numsize - 1);
    }

🐣思路 3:空间换时间

创建一个变长数据,拷贝前n-k个数都数组最后面,拷贝后k个数到数组最前面


void rotate(int* nums, int numsSize, int k)
{
    k%=numsSize;
    //变长数组
    int temp[numsSize];
    //拷贝前n-k个数
    int j=k;
    for(int i=0;i<numsSize-k;++i)
    {
        temp[j++]=nums[i];
    }
//拷贝后k个
    j = 0;
    for(int i=numsSize-k;i<numsSize;++i)
    {
        temp[j++]=nums[i];
    }
    for(int i=0;i<numsSize;++i)
    {
        nums[i]=temp[i];
    }
}
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
32 4
|
1月前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
15 0
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
20 0
|
16天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9
|
7天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
15 1
|
9天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
12天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。