Python数据分析(一)—— Numpy快速入门

简介: Python数据分析(一)—— Numpy快速入门



NumPy(Numerical Python)是Python科学计算的基础包,极大地简化了向量和矩阵的操作处理。

1 创建Numpy对象

Numpy最重要的就是其N NN维数组对象ndarray,它是一个通用的同构数据多维容器,其中的所有元素必须是相同类型。每个数组都有一个shape(表示各维度大小)和一个dtype(表示数据数据类型)。

(1) np.array

使用 np.array创建 NumPy 数组,它接受一切序列型的对象,如python列表等。

嵌套序列(等长列表组成的列表)将会被转换为一个多维数组。

更多维度:

import numpy as np
data1 = [1,2,3,4,5]
arr1 = np.array(data1)
data2 = [[1,2,3,4],[5,6,7,8]]
arr2 = np.array(data2)
print(data1)
print(data2)

(2)其他创建函数

  • arange:相当于内置的range,返回一个ndarray对象,常与reshape搭配产生给定形状数组。
  • ones/ ones_like:根据指定形状和dtype创建一个全1数组/ones_like以另一个数组为参数,根据其形状和dtype创建一个全1数组
  • zeros/zeros_like:与 ones/ ones_like,产生全0数组
  • empty:创建新数组,只分配内存空间不填充任何值
  • eye/identify:创建一个N × N N \times NN×N单位矩阵

numpy.random对Python内置的random进行了补充,增加了一些用于高效生产多种概率分布的样本值的函数

  • random(size=None):产生[ 0 , 1 ) [0,1)[0,1)上随机值
  • rand(d0, d1, ..., dn):产生[ 0 , 1 ) [0,1)[0,1)上均匀分布的样本值
  • randint(low, high=None, size=None, dtype='l'):给定的上下限范围内随机选取整数
  • randn(d0, d1, ..., dn):产生正态分布(平均值为0,标准差为1)的样本值
  • binomial(n, p, size=None):产生二项分布的样本值
  • normal(loc=0.0, scale=1.0, size=None):产生正态(高斯)分布的样本值
  • beta(a, b, size=None):产生Beta分布的样本值
  • chisquare(df, size=None):产生卡方分布的样本值
  • gamma(shape, scale=1.0, size=None):产生Gamma分布的样本值
  • uniform(low=0.0, high=1.0, size=None):产生[ l o w , h i g h ) [low,high)[low,high)上长均匀分布的样本值



    When you print a 3-dimensional NumPy array, the text output visualizes the array differently than shown here. NumPy’s order for printing n-dimensional arrays is that the last axis is looped over the fastest, while the first is the slowest.
np.arange(6)
np.arange(6).reshape(2,3)
np.ones((3,2))
np.zeros((3,2))
np.empty((3,2))
np.eye(5)
np.random.random((3,2))
np.random.rand(2,3)
np.random.randint(1,10,size=(2,3))
np.random.randn(2,3)
np.random.uniform(5,10,size=(2,3))

2 索引与切片

Numpy数组的索引和切片与Python列表功能差不多,跟列表的重要区别在于,数组切片是原始数组的试图,数据不会被复制,视图上的任何修改都会直接反应到源数组上。

(1)基本索引与切片

数组的索引与切片

矩阵的索引与切片

(2)布尔型索引

对于数组names,假设每个名字对应data数组的一行,选出名字为’Bob’的所有行:对names数组和字符串’Bob’的比较运算将会产生一个布尔型数组,这个数组可用于数组索引(该数组长度必须与被索引轴的长度一致)。

names = np.array(['Bob','Joe','Will','Will','Alice','Joe','Bob'])
names=='Bob'
names[names=='Bob']
names[names!='Bob']

(3) 花式索引

花式索引(Fancy indexing)是一个Numpy术语,指的是利用整数数组进行索引,以特定顺序选取行子集或列子集。

arr = np.arange(20).reshape(5,4)
arr[[2,0,3]]  #按顺序分别选取第2、0、3行
arr[:,[1,2]]  #按顺序分别选取第2、3列

3 数学运算

(1)数组运算

Numpy数组运算使得不用编写循环即可对数据执行批量运算,通常称为矢量化(Vectorization)

不同大小数组之间的运算称为广播(broadcasting),如以下向量与标量直接的运算

(2)矩阵运算

算数运算

点积运算

计算过程如下:

numpy.linalg中有一组标准的矩阵分解、求逆和行列式的方法,与Matlab和R语言使用的是相同的行业标准级Fortran库,主要如下:

  • diag:以一维数组的形式返回方阵对角线(或非对角线)元素,或将一维数组转换为方阵(非对角线元素为0)
  • dot:矩阵乘法
  • trace:对角线元素的和
  • det:矩阵行列式
  • eig:方阵的本征值和本征向量
  • inv:方阵的逆
  • pinv:矩阵的Moore-Penrose伪逆
  • qr:QR分解
  • svd:SVD分解
  • solve:解线性方程组A x = b Ax = bAx=bA AA为方阵
  • lstsqA x = b Ax=bAx=b的最小二乘解

4 统计方法

基本统计方法

  • sum:全部或轴向元素求和
  • mean:算数平均数。
  • std/var:标准差/方差
  • min/max:最小值/最大值
  • argmin/argmax:最大和最小元素的索引
  • cumsum:所有元素的累积和
  • cumprod:所有元素累积积

数组的聚合统计

矩阵的聚合统计

既可以基于行,也可以基于列

5 函数

Numpy可以看做简单函数的矢量化包装器。

(1)一元通用函数

  • abs:绝对值
  • sqrt:平方根
  • square:平方
  • exp:指数e x e^xex
  • log/log10/log2:分布对应底数为e ee(自然对数)、底数为10、底数为2的log ⁡ \loglog
  • ceil:大于等于该值的最小整数
  • floor:小于等于该值的最大整数

(2)二元通用函数

  • add:数组对应元素相加
  • subtract:数组对应元素相减
  • multiply:数组元素相乘
  • divide:数组元素相除
  • power:计算A B A^BAB,其中A AA为第一个数组中的元素,B BB为第二个数组中的元素
  • mod:元素级求模

6 其他方法

(1)转置

进行矩阵运算时,经常需要该操作,如利用np.dot计算矩阵内积X T X X^TXXTX。数组不仅有transpose方法,还有一个T属性。

arr = np.arange(15).reshape((3,5))
np.dot(arr,arr.T)

(2)np.where

np.where是三元表达式x if condition else y的矢量化版本。

arr = np.random.randn(4,4)
np.where(arr>0,2,-2) #正值设为2,负值设为-2

7 应用

(1)文本

对于文本需要将句子分成一个token 数组(基于通用规则的单词或单词的一部分),然后使用词汇表中的ID替换每个单词。

由于这些 ID 仍然没有为模型提供太多信息价值,一般使用word2vec嵌入(本例中为 50 维 word2vec 嵌入),NumPy 数组的维度为 [embedding_dimension x sequence_length] 。

像 BERT 这样的模型期望的输入形式是:[batch_size,sequence_length,embedding_size]:

(2)图像

对于彩色图像,每个像素由表示红绿蓝的三个数字表示,因此彩色图像由尺寸为(高 x 宽 x3)的 三维ndarray 表示:

(3)音频

CD质量的音频每秒包含44,100个样本,每个样本是-65535到65536之间的整数。音频文件是样本的一维数组,每个样本都是一个数字,代表音频信号的一小部分。对于10 秒的 CD 质量 WAVE 文件,可以将其加载到长度为10 × 44 , 100 = 441 , 000 10 \times 44,100 = 441,00010×44,100=441,000 的 NumPy 数组中。

Reference

https://jalammar.github.io/visual-numpy/

相关文章
|
18天前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
20天前
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
39 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
27天前
|
机器学习/深度学习 算法 数据挖掘
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧1
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
45 5
|
27天前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
23 2
|
27天前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
33 1
|
13天前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
13 0
|
13天前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--入门
Python数据分析篇--NumPy--入门
26 0
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
62 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
156 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
74 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析

热门文章

最新文章